/* * Copyright 1997, Regents of the University of Minnesota * * kmetis.c * * This file contains the top level routines for the multilevel k-way partitioning * algorithm KMETIS. * * Started 7/28/97 * George * */ #include /************************************************************************* * This function is the entry point for KMETIS **************************************************************************/ void METIS_PartGraphKway(idxtype *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, idxtype *wgtflag, idxtype *numflag, idxtype *nparts, idxtype *options, idxtype *edgecut, idxtype *part) { idxtype i; float *tpwgts; tpwgts = gk_fmalloc(*nparts, "KMETIS: tpwgts"); for (i=0; i<*nparts; i++) tpwgts[i] = 1.0/(1.0*(*nparts)); METIS_WPartGraphKway(nvtxs, xadj, adjncy, vwgt, adjwgt, wgtflag, numflag, nparts, tpwgts, options, edgecut, part); gk_free((void **)&tpwgts, LTERM); } /************************************************************************* * This function is the entry point for KWMETIS **************************************************************************/ void METIS_WPartGraphKway(idxtype *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, idxtype *wgtflag, idxtype *numflag, idxtype *nparts, float *tpwgts, idxtype *options, idxtype *edgecut, idxtype *part) { idxtype i, j; GraphType graph; CtrlType ctrl; if (*numflag == 1) Change2CNumbering(*nvtxs, xadj, adjncy); SetUpGraph(&graph, OP_KMETIS, *nvtxs, 1, xadj, adjncy, vwgt, adjwgt, *wgtflag); if (options[0] == 0) { /* Use the default parameters */ ctrl.CType = KMETIS_CTYPE; ctrl.IType = KMETIS_ITYPE; ctrl.RType = KMETIS_RTYPE; ctrl.dbglvl = KMETIS_DBGLVL; } else { ctrl.CType = options[OPTION_CTYPE]; ctrl.IType = options[OPTION_ITYPE]; ctrl.RType = options[OPTION_RTYPE]; ctrl.dbglvl = options[OPTION_DBGLVL]; } ctrl.optype = OP_KMETIS; ctrl.CoarsenTo = amax((*nvtxs)/(40*gk_log2(*nparts)), 20*(*nparts)); ctrl.maxvwgt = 1.5*((graph.vwgt ? idxsum(*nvtxs, graph.vwgt, 1) : (*nvtxs))/ctrl.CoarsenTo); InitRandom(-1); AllocateWorkSpace(&ctrl, &graph, *nparts); IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl)); IFSET(ctrl.dbglvl, DBG_TIME, gk_startcputimer(ctrl.TotalTmr)); *edgecut = MlevelKWayPartitioning(&ctrl, &graph, *nparts, part, tpwgts, 1.03); IFSET(ctrl.dbglvl, DBG_TIME, gk_stopcputimer(ctrl.TotalTmr)); IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl)); FreeWorkSpace(&ctrl, &graph); if (*numflag == 1) Change2FNumbering(*nvtxs, xadj, adjncy, part); } /************************************************************************* * This function takes a graph and produces a bisection of it **************************************************************************/ idxtype MlevelKWayPartitioning(CtrlType *ctrl, GraphType *graph, idxtype nparts, idxtype *part, float *tpwgts, float ubfactor) { idxtype i, j, nvtxs, tvwgt, tpwgts2[2]; GraphType *cgraph; idxtype wgtflag=3, numflag=0, options[10], edgecut; cgraph = Coarsen2Way(ctrl, graph); IFSET(ctrl->dbglvl, DBG_TIME, gk_startcputimer(ctrl->InitPartTmr)); AllocateKWayPartitionMemory(ctrl, cgraph, nparts); options[0] = 1; options[OPTION_CTYPE] = MTYPE_SHEMKWAY; options[OPTION_ITYPE] = ITYPE_GGPKL; options[OPTION_RTYPE] = RTYPE_FM; options[OPTION_DBGLVL] = 0; METIS_WPartGraphRecursive(&cgraph->nvtxs, cgraph->xadj, cgraph->adjncy, cgraph->vwgt, cgraph->adjwgt, &wgtflag, &numflag, &nparts, tpwgts, options, &edgecut, cgraph->where); IFSET(ctrl->dbglvl, DBG_TIME, gk_stopcputimer(ctrl->InitPartTmr)); IFSET(ctrl->dbglvl, DBG_IPART, mprintf("Initial %D-way partitioning cut: %D\n", nparts, edgecut)); IFSET(ctrl->dbglvl, DBG_KWAYPINFO, ComputePartitionInfo(cgraph, nparts, cgraph->where)); RefineKWay(ctrl, graph, cgraph, nparts, tpwgts, ubfactor); idxcopy(graph->nvtxs, graph->where, part); FreeGraph(graph, 0); return graph->mincut; }