/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2017 OpenFOAM Foundation Copyright (C) 2020 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Application momentOfInertiaTest Description Calculates the inertia tensor and principal axes and moments of a test face, tetrahedron and cell. \*---------------------------------------------------------------------------*/ #include "argList.H" #include "Time.H" #include "polyMesh.H" #include "ListOps.H" #include "face.H" #include "tetPointRef.H" #include "triFaceList.H" #include "OFstream.H" #include "meshTools.H" #include "momentOfInertia.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // using namespace Foam; int main(int argc, char *argv[]) { argList::addOption ( "cell", "label", "cell to use for inertia calculation, defaults to 0" ); #include "setRootCase.H" #include "createTime.H" #include "createPolyMesh.H" scalar density = 1.0; { label nPts = 6; pointField pts(nPts); pts[0] = point(4.495, 3.717, -4.112); pts[1] = point(4.421, 3.932, -4.112); pts[2] = point(4.379, 4.053, -4.112); pts[3] = point(4.301, 4.026, -4.300); pts[4] = point(4.294, 4.024, -4.317); pts[5] = point(4.409, 3.687, -4.317); face f(identity(nPts)); point Cf = f.centre(pts); tensor J = Zero; J = f.inertia(pts, Cf, density); vector eVal = eigenValues(symm(J)); tensor eVec = eigenVectors(symm(J)); Info<< nl << "Inertia tensor of test face " << J << nl << "eigenValues (principal moments) " << eVal << nl << "eigenVectors (principal axes) " << eVec << endl; OFstream str("momentOfInertiaTestFace.obj"); Info<< nl << "Writing test face and scaled principal axes to " << str.name() << endl; forAll(pts, ptI) { meshTools::writeOBJ(str, pts[ptI]); } str << "l"; forAll(f, fI) { str << ' ' << fI + 1; } str << " 1" << endl; scalar scale = mag(Cf - pts[f[0]])/eVal.component(findMin(eVal)); meshTools::writeOBJ(str, Cf); meshTools::writeOBJ(str, Cf + scale*eVal.x()*eVec.x()); meshTools::writeOBJ(str, Cf + scale*eVal.y()*eVec.y()); meshTools::writeOBJ(str, Cf + scale*eVal.z()*eVec.z()); for (label i = nPts + 1; i < nPts + 4; i++) { str << "l " << nPts + 1 << ' ' << i + 1 << endl; } } { label nPts = 4; pointField pts(nPts); pts[0] = point(0, 0, 0); pts[1] = point(1, 0, 0); pts[2] = point(0.5, 1, 0); pts[3] = point(0.5, 0.5, 1); tetPointRef tet(pts[0], pts[1], pts[2], pts[3]); triFaceList tetFaces(4); tetFaces[0] = triFace(0, 2, 1); tetFaces[1] = triFace(1, 2, 3); tetFaces[2] = triFace(0, 3, 2); tetFaces[3] = triFace(0, 1, 3); scalar m = 0.0; vector cM = Zero; tensor J = Zero; momentOfInertia::massPropertiesSolid(pts, tetFaces, density, m, cM, J); vector eVal = eigenValues(symm(J)); tensor eVec = eigenVectors(symm(J)); Info<< nl << "Mass of tetrahedron " << m << nl << "Centre of mass of tetrahedron " << cM << nl << "Inertia tensor of tetrahedron " << J << nl << "eigenValues (principal moments) " << eVal << nl << "eigenVectors (principal axes) " << eVec << endl; OFstream str("momentOfInertiaTestTet.obj"); Info<< nl << "Writing test tetrahedron and scaled principal axes to " << str.name() << endl; forAll(pts, ptI) { meshTools::writeOBJ(str, pts[ptI]); } forAll(tetFaces, tFI) { const triFace& f = tetFaces[tFI]; str << "l"; forAll(f, fI) { str << ' ' << f[fI] + 1; } str << ' ' << f[0] + 1 << endl; } scalar scale = mag(cM - pts[0])/eVal.component(findMin(eVal)); meshTools::writeOBJ(str, cM); meshTools::writeOBJ(str, cM + scale*eVal.x()*eVec.x()); meshTools::writeOBJ(str, cM + scale*eVal.y()*eVec.y()); meshTools::writeOBJ(str, cM + scale*eVal.z()*eVec.z()); for (label i = nPts + 1; i < nPts + 4; i++) { str << "l " << nPts + 1 << ' ' << i + 1 << endl; } } { const label celli = args.getOrDefault