Info<< "Reading field p_rgh\n" << endl; volScalarField p_rgh ( IOobject ( "p_rgh", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); // Note: construct T to be around before the thermos. The thermos will // not update T. Info<< "Reading field T\n" << endl; volScalarField T ( IOobject ( "T", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Calculating field g.h\n" << endl; #include "readGravitationalAcceleration.H" #include "readhRef.H" #include "gh.H" volScalarField p ( IOobject ( "p", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), p_rgh ); Info<< "Creating multiphaseSystem\n" << endl; autoPtr fluidPtr = multiphaseSystem::New(mesh); multiphaseSystem& fluid = fluidPtr(); if (!fluid.incompressible()) { FatalError << "One or more phases are not incompressible. " << nl << "This is a incompressible solver." << abort(FatalError); } // Need to store rho for ddt(rho, U) volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), fluid.rho() ); rho.oldTime(); // Update p using fluid.rho() p = p_rgh + rho*gh; label pRefCell = 0; scalar pRefValue = 0.0; setRefCell ( p, p_rgh, pimple.dict(), pRefCell, pRefValue ); if (p_rgh.needReference()) { p += dimensionedScalar ( "p", p.dimensions(), pRefValue - getRefCellValue(p, pRefCell) ); p_rgh = p - rho*gh; } // Mass flux surfaceScalarField& rhoPhi = fluid.rhoPhi(); // Construct incompressible turbulence model autoPtr> turbulence ( CompressibleTurbulenceModel::New ( rho, U, rhoPhi, fluid ) ); // Creating radiation model autoPtr radiation ( radiation::radiationModel::New(T) ); Info<< "Calculating field rhoCp\n" << endl; volScalarField rhoCp ( IOobject ( "rhoCp", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), fluid.rho()*fluid.Cp() ); rhoCp.oldTime(); Info<< "Creating field kinetic energy K\n" << endl; volScalarField K("K", 0.5*magSqr(U));