/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2015-2019 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- | Copyright (C) 2011-2016 OpenFOAM Foundation ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Application surfaceSubset Group grpSurfaceUtilities Description A surface analysis tool that subsets the triSurface to choose a region of interest. Based on subsetMesh. \*---------------------------------------------------------------------------*/ #include "triSurface.H" #include "triSurfaceSearch.H" #include "argList.H" #include "Fstream.H" #include "IOdictionary.H" #include "boundBox.H" #include "indexedOctree.H" #include "treeDataTriSurface.H" #include "Random.H" #include "volumeType.H" #include "plane.H" using namespace Foam; // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { argList::addNote ( "A surface analysis tool that subsets the triSurface to choose a" " region of interest." ); argList::noParallel(); argList::addArgument("dict", "The surfaceSubsetDict"); argList::addArgument("input", "The input surface file"); argList::addArgument("output", "The output surface file"); argList args(argc, argv); Info<< "Reading dictionary " << args[1] << " ..." << endl; IFstream dictFile(args[1]); dictionary meshSubsetDict(dictFile); Info<< "Reading surface " << args[2] << " ..." << endl; triSurface surf1(args[2]); const fileName outFileName(args[3]); Info<< "Original:" << endl; surf1.writeStats(Info); Info<< endl; labelList markedPoints ( meshSubsetDict.lookup("localPoints") ); labelList markedEdges ( meshSubsetDict.lookup("edges") ); labelList markedFaces ( meshSubsetDict.lookup("faces") ); pointField markedZone ( meshSubsetDict.lookup("zone") ); if (markedZone.size() && markedZone.size() != 2) { FatalErrorInFunction << "zone specification should be two points, min and max of " << "the boundingbox" << endl << "zone:" << markedZone << exit(FatalError); } const bool addFaceNeighbours = meshSubsetDict.get("addFaceNeighbours"); const bool invertSelection = meshSubsetDict.lookupOrDefault("invertSelection", false); // Mark the cells for the subset // Faces to subset boolList facesToSubset(surf1.size(), false); // // pick up faces connected to "localPoints" // if (markedPoints.size()) { Info<< "Found " << markedPoints.size() << " marked point(s)." << endl; // pick up cells sharing the point forAll(markedPoints, pointi) { if ( markedPoints[pointi] < 0 || markedPoints[pointi] >= surf1.nPoints() ) { FatalErrorInFunction << "localPoint label " << markedPoints[pointi] << "out of range." << " The mesh has got " << surf1.nPoints() << " localPoints." << exit(FatalError); } const labelList& curFaces = surf1.pointFaces()[markedPoints[pointi]]; forAll(curFaces, i) { facesToSubset[curFaces[i]] = true; } } } // // pick up faces connected to "edges" // if (markedEdges.size()) { Info<< "Found " << markedEdges.size() << " marked edge(s)." << endl; // pick up cells sharing the edge forAll(markedEdges, edgeI) { if ( markedEdges[edgeI] < 0 || markedEdges[edgeI] >= surf1.nEdges() ) { FatalErrorInFunction << "edge label " << markedEdges[edgeI] << "out of range." << " The mesh has got " << surf1.nEdges() << " edges." << exit(FatalError); } const labelList& curFaces = surf1.edgeFaces()[markedEdges[edgeI]]; forAll(curFaces, i) { facesToSubset[curFaces[i]] = true; } } } // // pick up faces with centre inside "zone" // if (markedZone.size() == 2) { const point& min = markedZone[0]; const point& max = markedZone[1]; Info<< "Using zone min:" << min << " max:" << max << endl; forAll(surf1, facei) { const point centre = surf1[facei].centre(surf1.points()); if ( (centre.x() >= min.x()) && (centre.y() >= min.y()) && (centre.z() >= min.z()) && (centre.x() <= max.x()) && (centre.y() <= max.y()) && (centre.z() <= max.z()) ) { facesToSubset[facei] = true; } } } // // pick up faces on certain side of surface // if (meshSubsetDict.found("surface")) { const dictionary& surfDict = meshSubsetDict.subDict("surface"); const fileName surfName(surfDict.get("name")); const bool outside(surfDict.get("outside")); if (outside) { Info<< "Selecting all triangles with centre outside surface " << surfName << endl; } else { Info<< "Selecting all triangles with centre inside surface " << surfName << endl; } // Read surface to select on triSurface selectSurf(surfName); triSurfaceSearch searchSelectSurf ( selectSurf, indexedOctree::perturbTol(), 8 ); const indexedOctree& selectTree = searchSelectSurf.tree(); // Check if face (centre) is in outside or inside. forAll(facesToSubset, facei) { if (!facesToSubset[facei]) { const point fc(surf1[facei].centre(surf1.points())); volumeType t = selectTree.getVolumeType(fc); if ( outside ? (t == volumeType::OUTSIDE) : (t == volumeType::INSIDE) ) { facesToSubset[facei] = true; } } } } if (meshSubsetDict.found("plane")) { const dictionary& planeDict = meshSubsetDict.subDict("plane"); const plane pl(planeDict); const scalar distance(planeDict.get("distance")); const scalar cosAngle(planeDict.get("cosAngle")); // Select all triangles that are close to the plane and // whose normal aligns with the plane as well. forAll(surf1.faceCentres(), facei) { const point& fc = surf1.faceCentres()[facei]; const point& nf = surf1.faceNormals()[facei]; if (pl.distance(fc) < distance && mag(pl.normal() & nf) > cosAngle) { facesToSubset[facei] = true; } } } // // pick up specified "faces" // // Number of additional faces picked up because of addFaceNeighbours label nFaceNeighbours = 0; if (markedFaces.size()) { Info<< "Found " << markedFaces.size() << " marked face(s)." << endl; // Check and mark faces to pick up forAll(markedFaces, facei) { if ( markedFaces[facei] < 0 || markedFaces[facei] >= surf1.size() ) { FatalErrorInFunction << "Face label " << markedFaces[facei] << "out of range." << " The mesh has got " << surf1.size() << " faces." << exit(FatalError); } // Mark the face facesToSubset[markedFaces[facei]] = true; // mark its neighbours if requested if (addFaceNeighbours) { const labelList& curFaces = surf1.faceFaces()[markedFaces[facei]]; forAll(curFaces, i) { label facei = curFaces[i]; if (!facesToSubset[facei]) { facesToSubset[facei] = true; nFaceNeighbours++; } } } } } if (addFaceNeighbours) { Info<< "Added " << nFaceNeighbours << " faces because of addFaceNeighbours" << endl; } if (invertSelection) { Info<< "Inverting selection." << endl; forAll(facesToSubset, i) { facesToSubset[i] = facesToSubset[i] ? false : true; } } // Create subsetted surface triSurface surf2(surf1.subsetMesh(facesToSubset)); Info<< "Subset:" << endl; surf2.writeStats(Info); Info<< endl; Info<< "Writing surface to " << outFileName << endl; surf2.write(outFileName); Info<< "\nEnd\n" << endl; return 0; } // ************************************************************************* //