/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2019-2023 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Application Description Tests for complex numbers \*---------------------------------------------------------------------------*/ #include "argList.H" #include "complex.H" #include "complexFields.H" #include "scalarField.H" #include "diagTensor.H" #include "symmTensor.H" #include "symmTensor2D.H" #include "ListOps.H" #include "ops.H" using namespace Foam; // * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { Info<< "complex() : " << complex() << nl << "complex(zero) : " << complex(Zero) << nl << "pTraits::zero : " << pTraits::zero << nl << "pTraits::one : " << pTraits::one << nl << "complex(scalar) : " << complex(3.14519) << nl << nl; std::complex c1(10, -3); Info<< "std::complex : " << c1 << nl; Info<< "sin: " << std::sin(c1) << nl; Info<< "complexVector::zero : " << complexVector::zero << nl << "complexVector::one : " << complexVector::one << nl << nl; { const complex a(0, 1); const complex b(20, 100); Info<< "lerp of " << a << " : " << b << nl; for (const double t : { 0.0, 0.5, 1.0, -0.5, 1.5 }) { Info<< " " << t << " = " << lerp(a, b, t) << nl; } } for (complex c : { complex{1, 0}, complex{1, 2}} ) { Info<< nl << "complex : " << c << " mag = " << c.magnitude() << " norm = " << c.magSqr() << nl; Info<< "sin: " << sin(c) << nl << "pow(3.0f): " << pow(c, 3.0f) << nl << "pow(3): " << pow(c, 3) << nl << "pow3: " << pow3(c) << nl << "log: " << log(c) << nl << "pow025: " << pow025(c) << nl ; // TDB: allow implicit construct from scalar? // // if (c == 1.0) // { // Info<< c << " == " << 1 << nl; // } } // Test powers of zero #if 1 { const complex complex0{0, 0}; const std::complex std0{0, 0}; const label label0{0}; const scalar scalar0{0}; Info<< nl << "# std::pow(0, 0)" << nl << " (label, label) = " << std::pow(label0, label0) << nl << " (scalar, scalar) = " << std::pow(scalar0, scalar0) << nl << " (label, scalar) = " << std::pow(label0, scalar0) << nl << " (scalar, label) = " << std::pow(scalar0, label0) << nl << " (std::complex, label) = " << std::pow(std0, label0) << nl << " (std::complex, scalar) = " << std::pow(std0, scalar0) << nl << " (label, std::complex) = " << std::pow(label0, std0) << nl << " (scalar, std::complex) = " << std::pow(scalar0, std0) << nl ; Info<< nl << "# Foam::pow(0, 0)" << nl << " (label, label) = " << Foam::pow(label0, label0) << nl << " (scalar, scalar) = " << Foam::pow(scalar0, scalar0) << nl << " (label, scalar) = " << Foam::pow(label0, scalar0) << nl << " (scalar, label) = " << Foam::pow(scalar0, label0) << nl << " (complex, label) = " << Foam::pow(complex0, label0) << nl << " (complex, scalar) = " << Foam::pow(complex0, scalar0) << nl << " (label, complex) = " << Foam::pow(label0, complex0) << nl << " (scalar, complex) = " << Foam::pow(scalar0, complex0) << nl ; } #endif // Test zip/unzip { scalarField reals(4); scalarField imags(4); forAll(reals, i) { reals[i] = i; } forAll(imags, i) { imags[i] = (i % 2) ? -i : i; } complexField cmplx(4); zip(cmplx, reals, zero{}); zip(cmplx, 1, imags); zip(cmplx, reals, imags); Info<< nl << "zip " << reals << nl << " " << imags << nl << " => " << cmplx << nl; reverse(cmplx); Info<< "reverse order: " << cmplx << nl; unzip(cmplx, reals, imags); Info<< "unzip " << cmplx << nl << " => " << reals << nl << " => " << imags << nl; } { SymmTensor st1(SymmTensor::uniform({3, 4})); Info<< "symmTensor: " << st1 << nl << " tr: " << tr(st1) << nl << " diagSqr: " << st1.diagSqr() << nl << " magSqr: " << magSqr(st1) << nl << " mag: " << mag(st1) << nl; SymmTensor st2(SymmTensor::uniform(5)); Info<< "symmTensor: " << st2 << nl << " tr: " << tr(st2) << nl << " diagSqr: " << st2.diagSqr() << nl << " magSqr: " << magSqr(st2) << nl << " mag: " << mag(st2) << nl; st2 = Zero; DiagTensor dt1(SphericalTensor({3, 4})); Info<< "diagTensor: " << dt1 << nl << " tr: " << tr(dt1) << nl << " diagSqr: " << dt1.diagSqr() << nl << " magSqr: " << magSqr(dt1) << nl << " mag: " << mag(dt1) << nl; // A bit ugly... st1 = SphericalTensor({3, 4}); Info<< "symmTensor: " << st1 << nl << " tr: " << tr(st1) << nl << " diagSqr: " << st1.diagSqr() << nl << " magSqr: " << magSqr(st1) << nl << " mag: " << mag(st1) << nl; } { SymmTensor2D st1(SymmTensor2D::uniform({3, 4})); Info<< "symmTensor: " << st1 << nl << " tr: " << tr(st1) << nl << " diagSqr: " << st1.diagSqr() << nl << " magSqr: " << magSqr(st1) << nl << " mag: " << mag(st1) << nl; } { Tensor st1(Tensor::uniform({3, 4})); Info<< "tensor: " << st1 << nl << " tr: " << tr(st1) << nl << " diagSqr: " << st1.diagSqr() << nl << " magSqr: " << magSqr(st1) << nl << " mag: " << mag(st1) << endl; Tensor st2(Tensor::uniform(5)); Info<< "Tensor: " << st2 << nl << " tr: " << tr(st2) << nl << " diagSqr: " << st2.diagSqr() << nl << " magSqr: " << magSqr(st2) << nl << " mag: " << mag(st2) << endl; } complexField fld1(3, complex(2.0, 1.0)); complexField fld2(fld1); for (complex& c : fld2) { c = ~c; } Info<< nl << "Field " << flatOutput(fld1) << nl << "Conjugate: " << flatOutput(fld2) << nl; // Some arbitrary change for (complex& c : fld2) { c.Im() *= 5; } Info<< "sumProd: " << sumProd(fld1, fld2) << nl; fld1 *= 10; Info<< "scalar multiply: " << flatOutput(fld1) << nl; fld1 /= 10; Info<< "scalar divide: " << flatOutput(fld1) << nl; Info<< "sin: " << sin(fld1) << nl; Info<< "operator + : " << (fld1 + fld2) << nl; Info<< "operator + : " << (fld1 + fld2 + complex(1,0)) << nl; // Some operators are still incomplete // Info<< "operator * : " << (fld1 * fld2) << nl; // Info<< "operator / : " << (fld1 / fld2) << nl; // Info<< "operator / : " << (fld1 / 2) << nl; // Info<< "operator / : " << (fld1 / fld2) << nl; // Info<< "sqrt : " << sqrt(fld1) << nl; // Info<< "pow(2) : " << pow(fld1, 2) << nl; #if 1 Info<< nl << "## Elementary complex-complex arithmetic operations:" << nl; { const complex a(6, 1); complex b = a; Info<< "# Compound assignment operations:" << nl; Info<< "a = " << a << ", b = " << b << nl; // Addition b += a; Info<< "b += a:" << tab << "b =" << b << nl; // Subtraction b -= a; Info<< "b -= a:" << tab << "b =" << b << nl; // Multiplication b *= a; Info<< "b *= a:" << tab << "b =" << b << nl; // Division b /= a; Info<< "b /= a:" << tab << "b =" << b << nl; } #endif #if 1 Info<< nl << "## Elementary complex-scalar arithmetic operations:" << nl; { const scalar a = 5; complex b(6, 1); Info<< "# Non-assignment operations:" << nl; Info<< "(scalar) a = " << a << ", b = " << b << nl; // Addition b = a + b; Info<< "b = a + b: " << tab << b << nl; b = b + a; Info<< "b = b + a: " << tab << b << nl; // Subtraction b = a - b; Info<< "b = a - b: " << tab << b << nl; b = b - a; Info<< "b = b - a: " << tab << b << nl; // Multiplication b = a*b; Info<< "b = a*b: " << tab << b << nl; b = b*a; Info<< "b = b*a: " << tab << b << nl; // Division b = a/b; Info<< "b = a/b = scalar(a)/b = complex(a)/b:" << tab << b << nl; b = b/a; Info<< "b = b/a: " << tab << b << nl; Info<< "# Compound assignment operations:" << nl; Info<< "(scalar) a = " << a << ", b = " << b << nl; // Addition: complex+scalar b += a; Info<< "b += a (only real part):" << tab << b << nl; // Subtraction: complex-scalar b -= a; Info<< "b -= a (only real part):" << tab << b << nl; // Multiplication: complex*scalar b *= a; Info<< "b *= a (real and imag parts):" << tab << b << nl; // Division: complex/scalar b /= a; Info<< "b /= a (real and imag parts):" << tab << b << nl; } #endif #if 1 Info<< nl << "## Other mathematical expressions:" << nl; { const complex a(4.3, -3.14); const complex b(0, -4.3); const complex c(-4.3, 0); Info<< "a = " << a << ", b = " << b << ", c = " << c << nl; // Square-root Info<< "sqrt(a) = " << Foam::sqrt(a) << ", " << "sqrt(b) = " << Foam::sqrt(b) << ", " << "sqrt(c) = " << Foam::sqrt(c) << nl; // Square Info<< "sqr(a) = " << sqr(a) << ", " << "sqr(b) = " << sqr(b) << ", " << "sqr(c) = " << sqr(c) << nl; // n^th power Info<< "pow(a, -1) = " << pow(a, -1) << ", " << "pow(b, -1) = " << pow(b, -1) << ", " << "pow(c, -1) = " << pow(c, -1) << nl; // Exponential Info<< "exp(a) = " << exp(a) << ", " << "exp(b) = " << exp(b) << ", " << "exp(c) = " << exp(c) << nl; // Natural logarithm Info<< "log(a) = " << log(a) << ", " << "log(b) = " << log(b) << ", " << "log(c) = " << log(c) << nl; } #endif // Make some changes { label i = 1; for (complex& c : fld1) { c.Re() += i; c.Im() -= 10 - i; ++i; } } Info<< nl << "field = " << fld1 << nl; Info<< "magSqr = " << ListOps::create ( fld1, [](const complex& c) { return magSqr(c); } ) << nl; Info << "sum = " << sum(fld1) << nl << "min = " << min(fld1) << nl << "max = " << max(fld1) << nl; // MinMax fails since there is no less comparison operator // Info<< "min/max = " << MinMax(fld1) << nl; // Cross-product { const vector vec(1, 2, 3); const vector realValue(4, 5, 6); const vector imagValue(7, 8, 9); complexVector cmplxVec(zip(realValue, imagValue)); Info<< "complexVector: " << cmplxVec << nl; Info<< "cross: " << (vec ^ cmplxVec) << nl; Info<< "cross real: " << (vec ^ realValue) << nl << "cross imag: " << (vec ^ imagValue) << nl << "cross : " << zip((vec ^ realValue), (vec ^ imagValue)) << nl; } Info<< "\nEnd\n" << endl; return 0; } // ************************************************************************* //