/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2015-2017 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "surfaceNoise.H" #include "surfaceReader.H" #include "surfaceWriter.H" #include "noiseFFT.H" #include "graph.H" #include "addToRunTimeSelectionTable.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { namespace noiseModels { // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // defineTypeNameAndDebug(surfaceNoise, 0); addToRunTimeSelectionTable(noiseModel, surfaceNoise, dictionary); // * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * // void surfaceNoise::initialise(const fileName& fName) { Info<< "Reading data file " << fName << endl; label nAvailableTimes = 0; // All reading performed on the master processor only if (Pstream::master()) { // Create the surface reader readerPtr_ = surfaceReader::New(readerType_, fName); // Find the index of the pressure data const List fieldNames(readerPtr_->fieldNames(0)); pIndex_ = findIndex(fieldNames, pName_); if (pIndex_ == -1) { FatalErrorInFunction << "Unable to find pressure field name " << pName_ << " in list of available fields: " << fieldNames << exit(FatalError); } // Create the surface writer // - Could be done later, but since this utility can process a lot of // data we can ensure that the user-input is correct prior to doing // the heavy lifting // Set the time range const instantList allTimes = readerPtr_->times(); startTimeIndex_ = findStartTimeIndex(allTimes, startTime_); // Determine the windowing nAvailableTimes = allTimes.size() - startTimeIndex_; } Pstream::scatter(pIndex_); Pstream::scatter(startTimeIndex_); Pstream::scatter(nAvailableTimes); // Note: all processors should call the windowing validate function label nRequiredTimes = windowModelPtr_->validate(nAvailableTimes); if (Pstream::master()) { // Restrict times const instantList allTimes = readerPtr_->times(); times_.setSize(nRequiredTimes); forAll(times_, timeI) { times_[timeI] = allTimes[timeI + startTimeIndex_].value(); } deltaT_ = checkUniformTimeStep(times_); // Read the surface geometry const meshedSurface& surf = readerPtr_->geometry(); nFace_ = surf.size(); } Pstream::scatter(times_); Pstream::scatter(deltaT_); Pstream::scatter(nFace_); } void surfaceNoise::readSurfaceData ( const labelList& procFaceOffset, List& pData ) { // Data is stored as pressure on surface at a given time. Now we need to // pivot the data so that we have the complete pressure time history per // surface face. In serial mode, this results in all pressure data being // loaded into memory (!) Info << "Reading pressure data" << endl; if (Pstream::parRun()) { PstreamBuffers pBufs(Pstream::nonBlocking); // Procedure: // 1. Master processor reads pressure data for all faces for all times // 2. Master sends each processor a subset of faces // 3. Local processor reconstructs the full time history for the subset // of faces // Note: reading all data on master to avoid potential NFS problems... const label myProcI = Pstream::myProcNo(); const label nLocalFace = procFaceOffset[myProcI + 1] - procFaceOffset[myProcI]; // Complete pressure time history data for subset of faces pData.setSize(nLocalFace); const label nTimes = times_.size(); forAll(pData, faceI) { pData[faceI].setSize(nTimes); } // Read and send data forAll(times_, i) { pBufs.clear(); if (Pstream::master()) { label timeI = i + startTimeIndex_; Info<< " time: " << times_[i] << endl; // Read pressure at all faces for time timeI scalarField p(readerPtr_->field(timeI, pIndex_, scalar(0))); // Apply conversions p *= rhoRef_; // Send subset of faces to each processor for (label procI = 0; procI < Pstream::nProcs(); procI++) { label face0 = procFaceOffset[procI]; label nLocalFace = procFaceOffset[procI + 1] - procFaceOffset[procI]; UOPstream toProc(procI, pBufs); toProc << SubList(p, nLocalFace, face0); } } pBufs.finishedSends(); // Receive data from the master UIPstream fromProc(0, pBufs); scalarList pSlice(fromProc); forAll(pSlice, faceI) { pData[faceI][i] = pSlice[faceI]; } } } else { const label nLocalFace = procFaceOffset[0]; pData.setSize(nLocalFace); forAll(times_, timeI) { forAll(pData, faceI) { pData[faceI].setSize(times_.size()); } } forAll(times_, i) { label timeI = i + startTimeIndex_; Info<< " time: " << times_[i] << endl; const scalarField p(readerPtr_->field(timeI, pIndex_, scalar(0))); forAll(p, faceI) { pData[faceI][i] = p[faceI]*rhoRef_; } } } Info<< "Read " << returnReduce(pData.size(), sumOp