openfoam/applications/test/Distribution/Test-Distribution.C
2019-10-31 14:48:44 +00:00

295 lines
8.1 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-Distribution
Description
Test the Distribution class
Plot normal distribution test in gnuplot using:
\verbatim
normalDistribution(mean, sigma, x) = \
sqrt(1.0/(2.0*pi*sigma**2))*exp(-(x - mean)**2.0/(2.0*sigma**2))
plot normalDistribution(8.5, 2.5, x), "Distribution_scalar_test_x" w p
\endverbatim
\*---------------------------------------------------------------------------*/
#include "vector.H"
#include "labelVector.H"
#include "tensor.H"
#include "Distribution.H"
#include "Random.H"
#include "dimensionedTypes.H"
#include "argList.H"
#include "PstreamReduceOps.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
int main(int argc, char *argv[])
{
#include "setRootCase.H"
Random R(918273);
{
// scalar
label randomDistributionTestSize = 50000000;
Distribution<scalar> dS(scalar(5e-2));
Info<< nl << "Distribution<scalar>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from GaussNormal distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS.add(2.5*R.GaussNormal<scalar>() + 8.5);
}
Info<< "Mean " << dS.mean() << nl
<< "Median " << dS.median()
<< endl;
dS.write("Distribution_scalar_test_1");
Distribution<scalar> dS2(scalar(1e-2));
Info<< nl << "Distribution<scalar>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from GaussNormal distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS2.add(1.5*R.GaussNormal<scalar>() -6.0);
}
Info<< "Mean " << dS2.mean() << nl
<< "Median " << dS2.median()
<< endl;
dS2.write("Distribution_scalar_test_2");
Info<< nl << "Adding previous two Distribution<scalar>" << endl;
dS = dS + dS2;
dS.write("Distribution_scalar_test_1+2");
}
if (Pstream::parRun())
{
// scalar in parallel
label randomDistributionTestSize = 100000000;
Distribution<scalar> dS(scalar(1e-1));
Pout<< "Distribution<scalar>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS.add(R.sample01<scalar>() + 10*Pstream::myProcNo());
}
Pout<< "Mean " << dS.mean() << nl
<< "Median " << dS.median()
<< endl;
reduce(dS, sumOp<Distribution<scalar>>());
if (Pstream::master())
{
Info<< "Reducing parallel Distribution<scalar>" << nl
<< "Mean " << dS.mean() << nl
<< "Median " << dS.median()
<< endl;
dS.write("Distribution_scalar_test_parallel_reduced");
}
}
{
// vector
Distribution<vector> dV(vector(0.1, 0.05, 0.15));
label randomDistributionTestSize = 1000000;
Info<< nl << "Distribution<vector>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform and GaussNormal distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dV.add(R.sample01<vector>());
// Adding separate GaussNormal components with component
// weights
dV.add
(
vector
(
R.GaussNormal<scalar>()*3.0 + 1.5,
R.GaussNormal<scalar>()*0.25 + 4.0,
R.GaussNormal<scalar>()*3.0 - 1.5
),
vector(1.0, 2.0, 5.0)
);
}
Info<< "Mean " << dV.mean() << nl
<< "Median " << dV.median()
<< endl;
dV.write("Distribution_vector_test");
}
// {
// // labelVector
// Distribution<labelVector> dLV(labelVector::one*10);
// label randomDistributionTestSize = 2000000;
// Info<< nl << "Distribution<labelVector>" << nl
// << "Sampling "
// << randomDistributionTestSize
// << " times from uniform distribution."
// << endl;
// for (label i = 0; i < randomDistributionTestSize; i++)
// {
// dLV.add
// (
// labelVector
// (
// R.integer(-1000, 1000),
// R.integer(-5000, 5000),
// R.integer(-2000, 7000)
// )
// );
// }
// Info<< "Mean " << dLV.mean() << nl
// << "Median " << dLV.median()
// << endl;
// dLV.write("Distribution_labelVector_test");
// }
{
// tensor
Distribution<tensor> dT(tensor::one*1e-2);
label randomDistributionTestSize = 2000000;
Info<< nl << "Distribution<tensor>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dT.add(R.sample01<tensor>());
}
Info<< "Mean " << dT.mean() << nl
<< "Median " << dT.median()
<< endl;
dT.write("Distribution_tensor_test");
}
{
// symmTensor
Distribution<symmTensor> dSyT(symmTensor::one*1e-2);
label randomDistributionTestSize = 2000000;
Info<< nl << "Distribution<symmTensor>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dSyT.add(R.sample01<symmTensor>());
}
Info<< "Mean " << dSyT.mean() << nl
<< "Median " << dSyT.median()
<< endl;
dSyT.write("Distribution_symmTensor_test");
}
{
// sphericalTensor
Distribution<sphericalTensor> dSpT(sphericalTensor::one*1e-2);
label randomDistributionTestSize = 50000000;
Info<< nl << "Distribution<sphericalTensor>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dSpT.add(R.sample01<sphericalTensor>());
}
Info<< "Mean " << dSpT.mean() << nl
<< "Median " << dSpT.median()
<< endl;
dSpT.write("Distribution_sphericalTensor_test");
}
Info<< nl << "End" << nl << endl;
return 0;
}
// ************************************************************************* //