openfoam/applications/utilities/mesh/manipulation/checkMesh/checkTopology.C
mattijs e931525a0f BUG: sets relating to geometry (most mesh errors) should be written to
pointsInstance.

For now also dump topology related sets to pointsInstance since otherwise
paraFoam cannot see them (only looks at first 'sets' directory when searching
back)
2010-01-28 12:19:17 +00:00

393 lines
11 KiB
C

#include "checkTopology.H"
#include "polyMesh.H"
#include "Time.H"
#include "regionSplit.H"
#include "cellSet.H"
#include "faceSet.H"
#include "pointSet.H"
#include "IOmanip.H"
bool Foam::checkSync(const wordList& names)
{
List<wordList> allNames(Pstream::nProcs());
allNames[Pstream::myProcNo()] = names;
Pstream::gatherList(allNames);
bool hasError = false;
for (label procI = 1; procI < allNames.size(); procI++)
{
if (allNames[procI] != allNames[0])
{
hasError = true;
Info<< " ***Inconsistent zones across processors, "
"processor 0 has zones:" << allNames[0]
<< ", processor " << procI << " has zones:"
<< allNames[procI]
<< endl;
}
}
return hasError;
}
Foam::label Foam::checkTopology
(
const polyMesh& mesh,
const bool allTopology,
const bool allGeometry
)
{
label noFailedChecks = 0;
Info<< "Checking topology..." << endl;
// Check if the boundary definition is unique
mesh.boundaryMesh().checkDefinition(true);
// Check if the boundary processor patches are correct
mesh.boundaryMesh().checkParallelSync(true);
// Check names of zones are equal
if (checkSync(mesh.cellZones().names()))
{
noFailedChecks++;
}
if (checkSync(mesh.faceZones().names()))
{
noFailedChecks++;
}
if (checkSync(mesh.pointZones().names()))
{
noFailedChecks++;
}
// Check contents of faceZones consistent
{
forAll(mesh.faceZones(), zoneI)
{
if (mesh.faceZones()[zoneI].checkParallelSync(false))
{
Info<< " ***FaceZone " << mesh.faceZones()[zoneI].name()
<< " is not correctly synchronised"
<< " acrosss coupled boundaries."
<< " (coupled faces both"
<< " present in set but with opposite flipmap)" << endl;
noFailedChecks++;
}
}
}
{
pointSet points(mesh, "unusedPoints", mesh.nPoints()/100);
if (mesh.checkPoints(true, &points))
{
noFailedChecks++;
label nPoints = returnReduce(points.size(), sumOp<label>());
Info<< " <<Writing " << nPoints
<< " unused points to set " << points.name() << endl;
points.instance() = mesh.pointsInstance();
points.write();
}
}
{
faceSet faces(mesh, "upperTriangularFace", mesh.nFaces()/100);
if (mesh.checkUpperTriangular(true, &faces))
{
noFailedChecks++;
}
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " unordered faces to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
if (allTopology)
{
cellSet cells(mesh, "zipUpCells", mesh.nCells()/100);
if (mesh.checkCellsZipUp(true, &cells))
{
noFailedChecks++;
label nCells = returnReduce(cells.size(), sumOp<label>());
Info<< " <<Writing " << nCells
<< " cells with over used edges to set " << cells.name()
<< endl;
cells.instance() = mesh.pointsInstance();
cells.write();
}
}
{
faceSet faces(mesh, "outOfRangeFaces", mesh.nFaces()/100);
if (mesh.checkFaceVertices(true, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
Info<< " <<Writing " << nFaces
<< " faces with out-of-range or duplicate vertices to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
if (allTopology)
{
faceSet faces(mesh, "edgeFaces", mesh.nFaces()/100);
if (mesh.checkFaceFaces(true, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
Info<< " <<Writing " << nFaces
<< " faces with incorrect edges to set " << faces.name()
<< endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
if (allTopology)
{
labelList nInternalFaces(mesh.nCells(), 0);
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
nInternalFaces[mesh.faceOwner()[faceI]]++;
nInternalFaces[mesh.faceNeighbour()[faceI]]++;
}
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAll(patches, patchI)
{
if (patches[patchI].coupled())
{
const unallocLabelList& owners = patches[patchI].faceCells();
forAll(owners, i)
{
nInternalFaces[owners[i]]++;
}
}
}
faceSet oneCells(mesh, "oneInternalFaceCells", mesh.nCells()/100);
faceSet twoCells(mesh, "twoInternalFacesCells", mesh.nCells()/100);
forAll(nInternalFaces, cellI)
{
if (nInternalFaces[cellI] <= 1)
{
oneCells.insert(cellI);
}
else if (nInternalFaces[cellI] == 2)
{
twoCells.insert(cellI);
}
}
label nOneCells = returnReduce(oneCells.size(), sumOp<label>());
if (nOneCells > 0)
{
Info<< " <<Writing " << nOneCells
<< " cells with with single non-boundary face to set "
<< oneCells.name()
<< endl;
oneCells.instance() = mesh.pointsInstance();
oneCells.write();
}
label nTwoCells = returnReduce(twoCells.size(), sumOp<label>());
if (nTwoCells > 0)
{
Info<< " <<Writing " << nTwoCells
<< " cells with with single non-boundary face to set "
<< twoCells.name()
<< endl;
twoCells.instance() = mesh.pointsInstance();
twoCells.write();
}
}
{
regionSplit rs(mesh);
if (rs.nRegions() == 1)
{
Info<< " Number of regions: " << rs.nRegions() << " (OK)."
<< endl;
}
else
{
Info<< " *Number of regions: " << rs.nRegions() << endl;
Info<< " The mesh has multiple regions which are not connected "
"by any face." << endl
<< " <<Writing region information to "
<< mesh.time().timeName()/"cellToRegion"
<< endl;
labelIOList ctr
(
IOobject
(
"cellToRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
rs
);
ctr.write();
}
}
if (!Pstream::parRun())
{
Pout<< "\nChecking patch topology for multiply connected surfaces ..."
<< endl;
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Non-manifold points
pointSet points
(
mesh,
"nonManifoldPoints",
mesh.nPoints()/100
);
Pout.setf(ios_base::left);
Pout<< " "
<< setw(20) << "Patch"
<< setw(9) << "Faces"
<< setw(9) << "Points"
<< setw(34) << "Surface topology";
if (allGeometry)
{
Pout<< " Bounding box";
}
Pout<< endl;
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
Pout<< " "
<< setw(20) << pp.name()
<< setw(9) << pp.size()
<< setw(9) << pp.nPoints();
primitivePatch::surfaceTopo pTyp = pp.surfaceType();
if (pp.empty())
{
Pout<< setw(34) << "ok (empty)";
}
else if (pTyp == primitivePatch::MANIFOLD)
{
if (pp.checkPointManifold(true, &points))
{
Pout<< setw(34) << "multiply connected (shared point)";
}
else
{
Pout<< setw(34) << "ok (closed singly connected)";
}
// Add points on non-manifold edges to make set complete
pp.checkTopology(false, &points);
}
else
{
pp.checkTopology(false, &points);
if (pTyp == primitivePatch::OPEN)
{
Pout<< setw(34) << "ok (non-closed singly connected)";
}
else
{
Pout<< setw(34) << "multiply connected (shared edge)";
}
}
if (allGeometry)
{
const pointField& pts = pp.points();
const labelList& mp = pp.meshPoints();
boundBox bb; // zero-sized
if (returnReduce(mp.size(), sumOp<label>()) > 0)
{
bb.min() = pts[mp[0]];
bb.max() = pts[mp[0]];
for (label i = 1; i < mp.size(); i++)
{
bb.min() = min(bb.min(), pts[mp[i]]);
bb.max() = max(bb.max(), pts[mp[i]]);
}
reduce(bb.min(), minOp<vector>());
reduce(bb.max(), maxOp<vector>());
}
Pout<< ' ' << bb;
}
Pout<< endl;
}
if (points.size())
{
Pout<< " <<Writing " << points.size()
<< " conflicting points to set "
<< points.name() << endl;
points.instance() = mesh.pointsInstance();
points.write();
}
//Pout.setf(ios_base::right);
}
// Force creation of all addressing if requested.
// Errors will be reported as required
if (allTopology)
{
mesh.cells();
mesh.faces();
mesh.edges();
mesh.points();
mesh.faceOwner();
mesh.faceNeighbour();
mesh.cellCells();
mesh.edgeCells();
mesh.pointCells();
mesh.edgeFaces();
mesh.pointFaces();
mesh.cellEdges();
mesh.faceEdges();
mesh.pointEdges();
}
return noFailedChecks;
}