openfoam/src/fvOptions/sources/derived/radialActuationDiskSource/radialActuationDiskSourceTemplates.C

146 lines
4.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "radialActuationDiskSource.H"
#include "volFields.H"
#include "fvMatrix.H"
#include "fvm.H"
#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class RhoFieldType>
void Foam::fv::radialActuationDiskSource::
addRadialActuationDiskAxialInertialResistance
(
vectorField& Usource,
const labelList& cells,
const scalarField& Vcells,
const RhoFieldType& rho,
const vectorField& U
)
{
scalarField Tr(cells.size());
tensor E(Zero);
const vector diskDir = this->diskDir();
E.diag(diskDir);
const Field<vector> zoneCellCentres(mesh().cellCentres(), cells);
const Field<scalar> zoneCellVolumes(mesh().cellVolumes(), cells);
const vector avgCentre = gSum(zoneCellVolumes*zoneCellCentres)/V();
const scalar maxR = gMax(mag(zoneCellCentres - avgCentre));
const scalar intCoeffs =
radialCoeffs_[0]
+ radialCoeffs_[1]*sqr(maxR)/2.0
+ radialCoeffs_[2]*pow4(maxR)/3.0;
if (mag(intCoeffs) < VSMALL)
{
FatalErrorInFunction
<< "Radial distribution coefficients lead to zero polynomial." << nl
<< "radialCoeffs = " << radialCoeffs_
<< exit(FatalError);
}
// Compute upstream U and rho, spatial-averaged over monitor-region
vector Uref(Zero);
scalar rhoRef = 0.0;
label szMonitorCells = monitorCells_.size();
for (const label celli : monitorCells_)
{
Uref += U[celli];
rhoRef = rhoRef + rho[celli];
}
reduce(Uref, sumOp<vector>());
reduce(rhoRef, sumOp<scalar>());
reduce(szMonitorCells, sumOp<label>());
if (szMonitorCells == 0)
{
FatalErrorInFunction
<< "No cell is available for incoming velocity monitoring."
<< exit(FatalError);
}
Uref /= szMonitorCells;
rhoRef /= szMonitorCells;
const scalar Ct = sink_*UvsCtPtr_->value(mag(Uref));
const scalar Cp = sink_*UvsCpPtr_->value(mag(Uref));
if (Cp <= VSMALL || Ct <= VSMALL)
{
FatalErrorInFunction
<< "Cp and Ct must be greater than zero." << nl
<< "Cp = " << Cp << ", Ct = " << Ct
<< exit(FatalError);
}
const scalar a = 1.0 - Cp/Ct;
const scalar T = 2.0*rhoRef*diskArea_*mag(Uref)*a*(1.0 - a);
forAll(cells, i)
{
const scalar r2 = magSqr(mesh().cellCentres()[cells[i]] - avgCentre);
Tr[i] =
T
*(radialCoeffs_[0] + radialCoeffs_[1]*r2 + radialCoeffs_[2]*sqr(r2))
/intCoeffs;
Usource[cells[i]] += ((Vcells[cells[i]]/V_)*Tr[i]*E) & Uref;
}
if
(
mesh_.time().timeOutputValue() >= writeFileStart_
&& mesh_.time().timeOutputValue() <= writeFileEnd_
)
{
Ostream& os = file();
writeCurrentTime(os);
os << Uref << tab << Cp << tab << Ct << tab << a << tab << T << tab
<< endl;
}
if (debug)
{
Info<< "Source name: " << name() << nl
<< "Average centre: " << avgCentre << nl
<< "Maximum radius: " << maxR << endl;
}
}
// ************************************************************************* //