249 lines
6.6 KiB
C
249 lines
6.6 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
potentialFoam
|
|
|
|
Group
|
|
grpBasicSolvers
|
|
|
|
Description
|
|
Potential flow solver.
|
|
|
|
\heading Solver details
|
|
The potential flow solution is typically employed to generate initial fields
|
|
for full Navier-Stokes codes. The flow is evolved using the equation:
|
|
|
|
\f[
|
|
\laplacian \Phi = \div(\vec{U})
|
|
\f]
|
|
|
|
Where:
|
|
\vartable
|
|
\Phi | Velocity potential [m2/s]
|
|
\vec{U} | Velocity [m/s]
|
|
\endvartable
|
|
|
|
The corresponding pressure field could be calculated from the divergence
|
|
of the Euler equation:
|
|
|
|
\f[
|
|
\laplacian p + \div(\div(\vec{U}\otimes\vec{U})) = 0
|
|
\f]
|
|
|
|
but this generates excessive pressure variation in regions of large
|
|
velocity gradient normal to the flow direction. A better option is to
|
|
calculate the pressure field corresponding to velocity variation along the
|
|
stream-lines:
|
|
|
|
\f[
|
|
\laplacian p + \div(\vec{F}\cdot\div(\vec{U}\otimes\vec{U})) = 0
|
|
\f]
|
|
where the flow direction tensor \f$\vec{F}\f$ is obtained from
|
|
\f[
|
|
\vec{F} = \hat{\vec{U}}\otimes\hat{\vec{U}}
|
|
\f]
|
|
|
|
\heading Required fields
|
|
\plaintable
|
|
U | Velocity [m/s]
|
|
\endplaintable
|
|
|
|
\heading Optional fields
|
|
\plaintable
|
|
p | Kinematic pressure [m2/s2]
|
|
Phi | Velocity potential [m2/s]
|
|
| Generated from p (if present) or U if not present
|
|
\endplaintable
|
|
|
|
\heading Options
|
|
\plaintable
|
|
-writep | write the Euler pressure
|
|
-writePhi | Write the final velocity potential
|
|
-initialiseUBCs | Update the velocity boundaries before solving for Phi
|
|
\endplaintable
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "pisoControl.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addOption
|
|
(
|
|
"pName",
|
|
"pName",
|
|
"Name of the pressure field"
|
|
);
|
|
|
|
argList::addBoolOption
|
|
(
|
|
"initialiseUBCs",
|
|
"Initialise U boundary conditions"
|
|
);
|
|
|
|
argList::addBoolOption
|
|
(
|
|
"writePhi",
|
|
"Write the final velocity potential field"
|
|
);
|
|
|
|
argList::addBoolOption
|
|
(
|
|
"writep",
|
|
"Calculate and write the Euler pressure field"
|
|
);
|
|
|
|
argList::addBoolOption
|
|
(
|
|
"withFunctionObjects",
|
|
"execute functionObjects"
|
|
);
|
|
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
#include "createMesh.H"
|
|
|
|
pisoControl potentialFlow(mesh, "potentialFlow");
|
|
|
|
#include "createFields.H"
|
|
#include "createMRF.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< nl << "Calculating potential flow" << endl;
|
|
|
|
// Since solver contains no time loop it would never execute
|
|
// function objects so do it ourselves
|
|
runTime.functionObjects().start();
|
|
|
|
MRF.makeRelative(phi);
|
|
adjustPhi(phi, U, p);
|
|
|
|
// Non-orthogonal velocity potential corrector loop
|
|
while (potentialFlow.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix PhiEqn
|
|
(
|
|
fvm::laplacian(dimensionedScalar("1", dimless, 1), Phi)
|
|
==
|
|
fvc::div(phi)
|
|
);
|
|
|
|
PhiEqn.setReference(PhiRefCell, PhiRefValue);
|
|
PhiEqn.solve();
|
|
|
|
if (potentialFlow.finalNonOrthogonalIter())
|
|
{
|
|
phi -= PhiEqn.flux();
|
|
}
|
|
}
|
|
|
|
MRF.makeAbsolute(phi);
|
|
|
|
Info<< "Continuity error = "
|
|
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
|
|
<< endl;
|
|
|
|
U = fvc::reconstruct(phi);
|
|
U.correctBoundaryConditions();
|
|
|
|
Info<< "Interpolated velocity error = "
|
|
<< (sqrt(sum(sqr((fvc::interpolate(U) & mesh.Sf()) - phi)))
|
|
/sum(mesh.magSf())).value()
|
|
<< endl;
|
|
|
|
// Write U and phi
|
|
U.write();
|
|
phi.write();
|
|
|
|
// Optionally write Phi
|
|
if (args.optionFound("writePhi"))
|
|
{
|
|
Phi.write();
|
|
}
|
|
|
|
// Calculate the pressure field from the Euler equation
|
|
if (args.optionFound("writep"))
|
|
{
|
|
Info<< nl << "Calculating approximate pressure field" << endl;
|
|
|
|
label pRefCell = 0;
|
|
scalar pRefValue = 0.0;
|
|
setRefCell
|
|
(
|
|
p,
|
|
potentialFlow.dict(),
|
|
pRefCell,
|
|
pRefValue
|
|
);
|
|
|
|
// Calculate the flow-direction filter tensor
|
|
volScalarField magSqrU(magSqr(U));
|
|
volSymmTensorField F(sqr(U)/(magSqrU + SMALL*average(magSqrU)));
|
|
|
|
// Calculate the divergence of the flow-direction filtered div(U*U)
|
|
// Filtering with the flow-direction generates a more reasonable
|
|
// pressure distribution in regions of high velocity gradient in the
|
|
// direction of the flow
|
|
volScalarField divDivUU
|
|
(
|
|
fvc::div
|
|
(
|
|
F & fvc::div(phi, U),
|
|
"div(div(phi,U))"
|
|
)
|
|
);
|
|
|
|
// Solve a Poisson equation for the approximate pressure
|
|
while (potentialFlow.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvm::laplacian(p) + divDivUU
|
|
);
|
|
|
|
pEqn.setReference(pRefCell, pRefValue);
|
|
pEqn.solve();
|
|
}
|
|
|
|
p.write();
|
|
}
|
|
|
|
runTime.functionObjects().end();
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|