199 lines
5.2 KiB
C
199 lines
5.2 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
applyBoundaryLayer
|
|
|
|
Description
|
|
Apply a simplified boundary-layer model to the velocity and
|
|
turbulence fields based on the 1/7th power-law.
|
|
|
|
The uniform boundary-layer thickness is either provided via the -ybl option
|
|
or calculated as the average of the distance to the wall scaled with
|
|
the thickness coefficient supplied via the option -Cbl. If both options
|
|
are provided -ybl is used.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "singlePhaseTransportModel.H"
|
|
#include "RASModel.H"
|
|
#include "wallDist.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// turbulence constants - file-scope
|
|
static const scalar Cmu(0.09);
|
|
static const scalar kappa(0.41);
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addNote
|
|
(
|
|
"apply a simplified boundary-layer model to the velocity and\n"
|
|
"turbulence fields based on the 1/7th power-law."
|
|
);
|
|
|
|
argList::addOption
|
|
(
|
|
"ybl",
|
|
"scalar",
|
|
"specify the boundary-layer thickness"
|
|
);
|
|
argList::addOption
|
|
(
|
|
"Cbl", "scalar",
|
|
"boundary-layer thickness as Cbl * mean distance to wall"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"writenut",
|
|
"write nut field"
|
|
);
|
|
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
#include "createMesh.H"
|
|
#include "createFields.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< "Time = " << runTime.timeName() << nl << endl;
|
|
|
|
// Modify velocity by applying a 1/7th power law boundary-layer
|
|
// u/U0 = (y/ybl)^(1/7)
|
|
// assumes U0 is the same as the current cell velocity
|
|
|
|
scalar yblv = ybl.value();
|
|
forAll(U, celli)
|
|
{
|
|
if (y[celli] <= yblv)
|
|
{
|
|
U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0));
|
|
}
|
|
}
|
|
|
|
Info<< "Writing U\n" << endl;
|
|
U.write();
|
|
|
|
// Update/re-write phi
|
|
phi = fvc::interpolate(U) & mesh.Sf();
|
|
phi.write();
|
|
|
|
// Calculate nut
|
|
tmp<volScalarField> tnut = turbulence->nut();
|
|
volScalarField& nut = tnut();
|
|
volScalarField S = mag(dev(symm(fvc::grad(U))));
|
|
nut = sqr(kappa*min(y, ybl))*::sqrt(2)*S;
|
|
|
|
if (args.optionFound("writenut"))
|
|
{
|
|
Info<< "Writing nut" << endl;
|
|
nut.write();
|
|
}
|
|
|
|
// Create G field - used by RAS wall functions
|
|
volScalarField G("RASModel::G", nut*2*sqr(S));
|
|
|
|
|
|
//--- Read and modify turbulence fields
|
|
|
|
// Turbulence k
|
|
tmp<volScalarField> tk = turbulence->k();
|
|
volScalarField& k = tk();
|
|
scalar ck0 = pow025(Cmu)*kappa;
|
|
k = sqr(nut/(ck0*min(y, ybl)));
|
|
k.correctBoundaryConditions();
|
|
|
|
Info<< "Writing k\n" << endl;
|
|
k.write();
|
|
|
|
|
|
// Turbulence epsilon
|
|
tmp<volScalarField> tepsilon = turbulence->epsilon();
|
|
volScalarField& epsilon = tepsilon();
|
|
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
|
|
epsilon = ce0*k*sqrt(k)/min(y, ybl);
|
|
epsilon.correctBoundaryConditions();
|
|
|
|
Info<< "Writing epsilon\n" << endl;
|
|
epsilon.write();
|
|
|
|
|
|
// Turbulence omega
|
|
IOobject omegaHeader
|
|
(
|
|
"omega",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
);
|
|
|
|
if (omegaHeader.headerOk())
|
|
{
|
|
volScalarField omega(omegaHeader, mesh);
|
|
omega = epsilon/(Cmu*k);
|
|
omega.correctBoundaryConditions();
|
|
|
|
Info<< "Writing omega\n" << endl;
|
|
omega.write();
|
|
}
|
|
|
|
|
|
// Turbulence nuTilda
|
|
IOobject nuTildaHeader
|
|
(
|
|
"nuTilda",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
);
|
|
|
|
if (nuTildaHeader.headerOk())
|
|
{
|
|
volScalarField nuTilda(nuTildaHeader, mesh);
|
|
nuTilda = nut;
|
|
nuTilda.correctBoundaryConditions();
|
|
|
|
Info<< "Writing nuTilda\n" << endl;
|
|
nuTilda.write();
|
|
}
|
|
|
|
|
|
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|