openfoam/applications/utilities/surface/surfaceMeshTriangulate/surfaceMeshTriangulate.C
Mark Olesen 147fa2a75d STYLE: add notes to some (most) command-line options
- mapFields and splitMeshRegions need more clarification
2010-04-27 10:50:15 +02:00

344 lines
9.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Description
Extracts triSurface from a polyMesh. Triangulates all boundary faces.
Region numbers on triangles are the patch numbers of the polyMesh.
Optionally only triangulates named patches.
If run in parallel the processor patches get filtered out by default and
the mesh gets merged. (based on vertex position, not topology, so might go
wrong!).
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "polyMesh.H"
#include "triSurface.H"
#include "triSurfaceTools.H"
#include "processorPolyPatch.H"
#include "ListListOps.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Main program:
int main(int argc, char *argv[])
{
argList::addNote
(
"extract surface from a polyMesh and triangulate boundary faces"
);
argList::validArgs.append("output file");
#include "addRegionOption.H"
argList::addBoolOption
(
"excludeProcPatches",
"exclude processor patches"
);
argList::addOption
(
"patches",
"(patch0 .. patchN)",
"only triangulate named patches"
);
#include "setRootCase.H"
#include "createTime.H"
const fileName outFileName(runTime.path()/args[1]);
Info<< "Extracting triSurface from boundaryMesh ..."
<< endl << endl;
Pout<< "Reading mesh from time " << runTime.value() << endl;
#include "createNamedPolyMesh.H"
const bool includeProcPatches =
!(
args.optionFound("excludeProcPatches")
|| Pstream::parRun()
);
// Create local surface from:
// - explicitly named patches only (-patches (at your option)
// - all patches (default in sequential mode)
// - all non-processor patches (default in parallel mode)
// - all non-processor patches (sequential mode, -excludeProcPatches (at your option)
// Construct table of patches to include.
const polyBoundaryMesh& bMesh = mesh.boundaryMesh();
labelHashSet includePatches(bMesh.size());
if (args.optionFound("patches"))
{
const wordList patchNames
(
args.optionLookup("patches")()
);
forAll(patchNames, patchNameI)
{
const word& patchName = patchNames[patchNameI];
label patchI = bMesh.findPatchID(patchName);
if (patchI == -1)
{
FatalErrorIn(args.executable()) << "No such patch "
<< patchName << endl << "Patches are " << bMesh.names()
<< exit(FatalError);
}
includePatches.insert(patchI);
}
}
else
{
forAll(bMesh, patchI)
{
const polyPatch& patch = bMesh[patchI];
if (includeProcPatches || !isA<processorPolyPatch>(patch))
{
includePatches.insert(patchI);
}
else
{
Pout<< patch.name() << " : skipped since processorPatch"
<< endl;
}
}
}
triSurface localSurface
(
triSurfaceTools::triangulate
(
mesh.boundaryMesh(),
includePatches
)
);
if (!Pstream::parRun())
{
Info<< "Writing surface to " << outFileName << endl;
localSurface.write(outFileName);
}
else
{
// Write local surface
fileName localPath = runTime.path()/runTime.caseName() + ".obj";
Pout<< "Writing local surface to " << localPath << endl;
localSurface.write(localPath);
Info<< endl;
// Gather all points on master
List<pointField> gatheredPoints(Pstream::nProcs());
gatheredPoints[Pstream::myProcNo()] = localSurface.points();
Pstream::gatherList(gatheredPoints);
// Gather all localSurface patches
List<geometricSurfacePatchList> gatheredPatches(Pstream::nProcs());
gatheredPatches[Pstream::myProcNo()] = localSurface.patches();
Pstream::gatherList(gatheredPatches);
// Gather all faces
List<List<labelledTri> > gatheredFaces(Pstream::nProcs());
gatheredFaces[Pstream::myProcNo()] = localSurface;
Pstream::gatherList(gatheredFaces);
if (Pstream::master())
{
// On master combine all points
pointField allPoints =
ListListOps::combine<pointField>
(
gatheredPoints,
accessOp<pointField>()
);
// Count number of patches.
label nPatches = 0;
forAll(gatheredPatches, procI)
{
nPatches += gatheredPatches[procI].size();
}
// Count number of faces.
label nFaces = 0;
forAll(gatheredFaces, procI)
{
nFaces += gatheredFaces[procI].size();
}
// Loop over all processors and
// - construct mapping from local to global patches
// - relabel faces (both points and regions)
label newPatchI = 0;
// Name to new patchI
HashTable<label> nameToIndex(2*nPatches);
// Storage (oversized) for all patches
geometricSurfacePatchList allPatches(nPatches);
label newFaceI = 0;
// Storage for all faces
List<labelledTri> allFaces(nFaces);
// Offset into allPoints for current processor
label pointOffset = 0;
for (label procI = 0; procI < Pstream::nProcs(); procI++)
{
Info<< "Processor " << procI << endl
<< "-----------" << endl;
const geometricSurfacePatchList& patches =
gatheredPatches[procI];
// From local patch numbering to global
labelList localToGlobal(patches.size());
forAll(patches, patchI)
{
const geometricSurfacePatch& sp = patches[patchI];
if (!nameToIndex.found(sp.name()))
{
nameToIndex.insert(sp.name(), newPatchI);
localToGlobal[patchI] = newPatchI;
allPatches[newPatchI] = sp;
newPatchI++;
}
else
{
localToGlobal[patchI] = nameToIndex[sp.name()];
}
}
Info<< "Local patch to global patch mapping:"
<< endl;
forAll(patches, patchI)
{
Info<< " name : " << patches[patchI].name() << endl
<< " local : " << patchI << endl
<< " global : " << localToGlobal[patchI]
<< endl;
}
Info<< "Local points added in global points starting at "
<< pointOffset
<< endl;
// Collect and relabel faces
const List<labelledTri>& localFaces = gatheredFaces[procI];
forAll(localFaces, faceI)
{
const labelledTri& f = localFaces[faceI];
allFaces[newFaceI++] =
labelledTri
(
f[0] + pointOffset,
f[1] + pointOffset,
f[2] + pointOffset,
localToGlobal[f.region()]
);
}
pointOffset += gatheredPoints[procI].size();
Info<< endl;
}
allPatches.setSize(newPatchI);
// We now have allPoints, allFaces and allPatches.
// Construct overall (yet unmerged) surface from these.
triSurface allSurf(allFaces, allPatches, allPoints);
// Cleanup (which does point merge as well
allSurf.cleanup(false);
// Write surface mesh
label slashIndex = runTime.caseName().find_last_of('/');
fileName globalCasePath(runTime.caseName().substr(0, slashIndex));
Info<< "Writing merged surface to " << globalCasePath << endl;
// create database for the sequential run
fileName globalPath
(
runTime.rootPath()
/ globalCasePath
/ args[1]
);
allSurf.write(globalPath);
}
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //