openfoam/src/regionModels/thermalBaffleModels/thermalBaffle/thermalBaffle.C
Mark Olesen 149cd7042f ENH: use thisDb reference when referencing/creating finite-area fields
COMP: remove faMesh::operator()() in favour of mesh() or thisDb() instead

- makes the purpose and usage clearer
2023-12-07 17:42:24 +01:00

361 lines
8.5 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2020-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "thermalBaffle.H"
#include "fvm.H"
#include "fvcDiv.H"
#include "addToRunTimeSelectionTable.H"
#include "zeroGradientFvPatchFields.H"
#include "fvMatrices.H"
#include "absorptionEmissionModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace regionModels
{
namespace thermalBaffleModels
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(thermalBaffle, 0);
addToRunTimeSelectionTable(thermalBaffleModel, thermalBaffle, mesh);
addToRunTimeSelectionTable(thermalBaffleModel, thermalBaffle, dictionary);
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
bool thermalBaffle::read()
{
this->solution().readEntry("nNonOrthCorr", nNonOrthCorr_);
return regionModel1D::read();
}
bool thermalBaffle::read(const dictionary& dict)
{
this->solution().readEntry("nNonOrthCorr", nNonOrthCorr_);
return regionModel1D::read(dict);
}
void thermalBaffle::solveEnergy()
{
DebugInFunction << endl;
const polyBoundaryMesh& rbm = regionMesh().boundaryMesh();
tmp<volScalarField> tQ
(
new volScalarField
(
IOobject
(
"tQ",
regionMesh().time().timeName(),
regionMesh().thisDb(),
IOobject::NO_READ,
IOobject::NO_WRITE,
IOobject::NO_REGISTER
),
regionMesh(),
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
)
);
volScalarField& Q = tQ.ref();
volScalarField rho("rho", thermo_->rho());
volScalarField alpha("alpha", thermo_->alpha());
// If region is one-dimension variable thickness
if (oneD_ && !constantThickness_)
{
// Scale K and rhoCp and fill Q in the internal baffle region.
const label patchi = intCoupledPatchIDs_[0];
const polyPatch& ppCoupled = rbm[patchi];
forAll(ppCoupled, localFacei)
{
const labelList& cells = boundaryFaceCells_[localFacei];
forAll(cells, i)
{
const label cellId = cells[i];
Q[cellId] =
qs_.boundaryField()[patchi][localFacei]
/thickness_[localFacei];
rho[cellId] *= delta_.value()/thickness_[localFacei];
alpha[cellId] *= delta_.value()/thickness_[localFacei];
}
}
}
else
{
Q = Q_;
}
fvScalarMatrix hEqn
(
fvm::ddt(rho, h_)
- fvm::laplacian(alpha, h_)
==
Q
);
if (moveMesh_)
{
surfaceScalarField phiMesh
(
fvc::interpolate(rho*h_)*regionMesh().phi()
);
hEqn -= fvc::div(phiMesh);
}
hEqn.relax();
hEqn.solve();
thermo_->correct();
Info<< "T min/max = " << min(thermo_->T()) << ", "
<< max(thermo_->T()) << endl;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
thermalBaffle::thermalBaffle
(
const word& modelType,
const fvMesh& mesh,
const dictionary& dict
)
:
thermalBaffleModel(modelType, mesh, dict),
nNonOrthCorr_(solution().get<label>("nNonOrthCorr")),
thermo_(solidThermo::New(regionMesh(), dict)),
h_(thermo_->he()),
qs_
(
IOobject
(
"qs",
regionMesh().time().timeName(),
regionMesh().thisDb(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar(dimEnergy/dimArea/dimTime, Zero)
),
Q_
(
IOobject
(
"Q",
regionMesh().time().timeName(),
regionMesh().thisDb(),
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
regionMesh(),
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
),
radiation_
(
radiation::radiationModel::New
(
dict.subDict("radiation"),
thermo_->T()
)
)
{
init();
thermo_->correct();
}
thermalBaffle::thermalBaffle
(
const word& modelType,
const fvMesh& mesh
)
:
thermalBaffleModel(modelType, mesh),
nNonOrthCorr_(solution().get<label>("nNonOrthCorr")),
thermo_(solidThermo::New(regionMesh())),
h_(thermo_->he()),
qs_
(
IOobject
(
"qs",
regionMesh().time().timeName(),
regionMesh().thisDb(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar(dimEnergy/dimArea/dimTime, Zero)
),
Q_
(
IOobject
(
"Q",
regionMesh().time().timeName(),
regionMesh().thisDb(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
),
radiation_
(
radiation::radiationModel::New
(
thermo_->T()
)
)
{
init();
thermo_->correct();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
thermalBaffle::~thermalBaffle()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void thermalBaffle::init()
{
if (oneD_ && !constantThickness_)
{
label patchi = intCoupledPatchIDs_[0];
const label qsb = qs_.boundaryField()[patchi].size();
if (qsb!= thickness_.size())
{
FatalErrorInFunction
<< "the boundary field of qs is "
<< qsb << " and " << nl
<< "the field 'thickness' is " << thickness_.size() << nl
<< exit(FatalError);
}
}
}
void thermalBaffle::preEvolveRegion()
{}
void thermalBaffle::evolveRegion()
{
for (int nonOrth=0; nonOrth<=nNonOrthCorr_; nonOrth++)
{
solveEnergy();
}
}
const tmp<volScalarField> thermalBaffle::Cp() const
{
return thermo_->Cp();
}
const volScalarField& thermalBaffle::kappaRad() const
{
return radiation_->absorptionEmission().a();
}
const volScalarField& thermalBaffle::rho() const
{
return thermo_->rho();
}
const volScalarField& thermalBaffle::kappa() const
{
return thermo_->kappa();
}
const volScalarField& thermalBaffle::T() const
{
return thermo_->T();
}
const solidThermo& thermalBaffle::thermo() const
{
return *thermo_;
}
void thermalBaffle::info()
{
const labelList& coupledPatches = intCoupledPatchIDs();
forAll(coupledPatches, i)
{
const label patchi = coupledPatches[i];
const fvPatchScalarField& ph = h_.boundaryField()[patchi];
const word patchName = regionMesh().boundary()[patchi].name();
Info<< indent << "Q : " << patchName << indent <<
gSum
(
mag(regionMesh().Sf().boundaryField()[patchi])
* ph.snGrad()
* thermo_->alpha().boundaryField()[patchi]
) << endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace thermalBaffleModels
} // End namespace regionModels
} // End namespace Foam
// ************************************************************************* //