openfoam/src/mesh/autoMesh/autoHexMesh/autoHexMeshDriver/layerParameters/layerParameters.C

600 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "layerParameters.H"
#include "polyBoundaryMesh.H"
#include "unitConversion.H"
#include "refinementSurfaces.H"
#include "searchableSurfaces.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
const Foam::scalar Foam::layerParameters::defaultConcaveAngle = 90;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::scalar Foam::layerParameters::layerExpansionRatio
(
const label n,
const scalar totalOverFirst
) const
{
if (n <= 1)
{
return 1.0;
}
//scalar totalOverFirst = totalThickness/firstLayerThickess;
const label maxIters = 10;
const scalar tol = 1e-8;
if (mag(n-totalOverFirst) < tol)
{
return 1.0;
}
// Calculate the bounds of the solution
scalar minR;
scalar maxR;
if (totalOverFirst < n)
{
minR = 0.0;
maxR = pow(totalOverFirst/n, 1/(n-1));
}
else
{
minR = pow(totalOverFirst/n, 1/(n-1));
maxR = totalOverFirst/(n - 1);
}
//Info<< "Solution bounds = (" << minR << ", " << maxR << ")" << nl << endl;
// Starting guess
scalar r = 0.5*(minR + maxR);
for (label i = 0; i < maxIters; ++i)
{
const scalar prevr = r;
const scalar fx = pow(r, n) - totalOverFirst*r - (1 - totalOverFirst);
const scalar dfx = n*pow(r, n - 1) - totalOverFirst;
r -= fx/dfx;
const scalar error = mag(r - prevr);
//Info<< i << " " << r << " Error = " << error << endl;
if (error < tol)
{
break;
}
}
return r;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from dictionary
Foam::layerParameters::layerParameters
(
const dictionary& dict,
const polyBoundaryMesh& boundaryMesh
)
:
numLayers_(boundaryMesh.size(), -1),
relativeSizes_(dict.lookup("relativeSizes")),
layerSpec_(ILLEGAL),
firstLayerThickness_(boundaryMesh.size(), -123),
finalLayerThickness_(boundaryMesh.size(), -123),
thickness_(boundaryMesh.size(), -123),
expansionRatio_(boundaryMesh.size(), -123),
minThickness_
(
boundaryMesh.size(),
readScalar(dict.lookup("minThickness"))
),
featureAngle_(readScalar(dict.lookup("featureAngle"))),
slipFeatureAngle_
(
dict.found("slipFeatureAngle")
? readScalar(dict.lookup("slipFeatureAngle"))
: 0.5*featureAngle_
),
concaveAngle_
(
dict.lookupOrDefault("concaveAngle", defaultConcaveAngle)
),
nGrow_(readLabel(dict.lookup("nGrow"))),
nSmoothSurfaceNormals_
(
readLabel(dict.lookup("nSmoothSurfaceNormals"))
),
nSmoothNormals_(readLabel(dict.lookup("nSmoothNormals"))),
nSmoothDisplacement_(dict.lookupOrDefault("nSmoothDisplacement", 0)),
nSmoothThickness_(readLabel(dict.lookup("nSmoothThickness"))),
maxFaceThicknessRatio_
(
readScalar(dict.lookup("maxFaceThicknessRatio"))
),
layerTerminationCos_
(
Foam::cos(degToRad(0.5*featureAngle_))
),
maxThicknessToMedialRatio_
(
readScalar(dict.lookup("maxThicknessToMedialRatio"))
),
minMedianAxisAngleCos_
(
Foam::cos(degToRad(readScalar(dict.lookup("minMedianAxisAngle"))))
),
nBufferCellsNoExtrude_
(
readLabel(dict.lookup("nBufferCellsNoExtrude"))
),
nSnap_(readLabel(dict.lookup("nRelaxIter"))),
nLayerIter_(readLabel(dict.lookup("nLayerIter"))),
nRelaxedIter_(labelMax),
additionalReporting_(dict.lookupOrDefault("additionalReporting", false))
{
// Detect layer specification mode
label nSpec = 0;
bool haveFirst = dict.found("firstLayerThickness");
if (haveFirst)
{
firstLayerThickness_ = scalarField
(
boundaryMesh.size(),
readScalar(dict.lookup("firstLayerThickness"))
);
nSpec++;
}
bool haveFinal = dict.found("finalLayerThickness");
if (haveFinal)
{
finalLayerThickness_ = scalarField
(
boundaryMesh.size(),
readScalar(dict.lookup("finalLayerThickness"))
);
nSpec++;
}
bool haveTotal = dict.found("thickness");
if (haveTotal)
{
thickness_ = scalarField
(
boundaryMesh.size(),
readScalar(dict.lookup("thickness"))
);
nSpec++;
}
bool haveExp = dict.found("expansionRatio");
if (haveExp)
{
expansionRatio_ = scalarField
(
boundaryMesh.size(),
readScalar(dict.lookup("expansionRatio"))
);
nSpec++;
}
if (haveFirst && haveTotal)
{
layerSpec_ = FIRST_AND_TOTAL;
Info<< "Layer thickness specified as first layer and overall thickness."
<< endl;
}
else if (haveFirst && haveExp)
{
layerSpec_ = FIRST_AND_EXPANSION;
Info<< "Layer thickness specified as first layer and expansion ratio."
<< endl;
}
else if (haveFinal && haveTotal)
{
layerSpec_ = FINAL_AND_TOTAL;
Info<< "Layer thickness specified as final layer and overall thickness."
<< endl;
}
else if (haveFinal && haveExp)
{
layerSpec_ = FINAL_AND_EXPANSION;
Info<< "Layer thickness specified as final layer and expansion ratio."
<< endl;
}
else if (haveTotal && haveExp)
{
layerSpec_ = TOTAL_AND_EXPANSION;
Info<< "Layer thickness specified as overall thickness"
<< " and expansion ratio." << endl;
}
if (layerSpec_ == ILLEGAL || nSpec != 2)
{
FatalIOErrorIn
(
"layerParameters::layerParameters"
"(const dictionary&, const polyBoundaryMesh&)",
dict
) << "Over- or underspecified layer thickness."
<< " Please specify" << nl
<< " first layer thickness ('firstLayerThickness')"
<< " and overall thickness ('thickness') or" << nl
<< " first layer thickness ('firstLayerThickness')"
<< " and expansion ratio ('expansionRatio') or" << nl
<< " final layer thickness ('finalLayerThickness')"
<< " and expansion ratio ('expansionRatio') or" << nl
<< " final layer thickness ('finalLayerThickness')"
<< " and overall thickness ('thickness') or" << nl
<< " overall thickness ('thickness')"
<< " and expansion ratio ('expansionRatio'"
<< exit(FatalIOError);
}
dict.readIfPresent("nRelaxedIter", nRelaxedIter_);
if (nLayerIter_ < 0 || nRelaxedIter_ < 0)
{
FatalIOErrorIn("layerParameters::layerParameters(..)", dict)
<< "Layer iterations should be >= 0." << endl
<< "nLayerIter:" << nLayerIter_
<< " nRelaxedIter:" << nRelaxedIter_
<< exit(FatalIOError);
}
const dictionary& layersDict = dict.subDict("layers");
forAllConstIter(dictionary, layersDict, iter)
{
if (iter().isDict())
{
const keyType& key = iter().keyword();
const labelHashSet patchIDs
(
boundaryMesh.patchSet(List<wordRe>(1, wordRe(key)))
);
if (patchIDs.size() == 0)
{
IOWarningIn("layerParameters::layerParameters(..)", layersDict)
<< "Layer specification for " << key
<< " does not match any patch." << endl
<< "Valid patches are " << boundaryMesh.names() << endl;
}
else
{
const dictionary& layerDict = iter().dict();
forAllConstIter(labelHashSet, patchIDs, patchIter)
{
label patchI = patchIter.key();
numLayers_[patchI] =
readLabel(layerDict.lookup("nSurfaceLayers"));
switch (layerSpec_)
{
case FIRST_AND_TOTAL:
layerDict.readIfPresent
(
"firstLayerThickness",
firstLayerThickness_[patchI]
);
layerDict.readIfPresent
(
"thickness",
thickness_[patchI]
);
break;
case FIRST_AND_EXPANSION:
layerDict.readIfPresent
(
"firstLayerThickness",
firstLayerThickness_[patchI]
);
layerDict.readIfPresent
(
"expansionRatio",
expansionRatio_[patchI]
);
break;
case FINAL_AND_TOTAL:
layerDict.readIfPresent
(
"finalLayerThickness",
finalLayerThickness_[patchI]
);
layerDict.readIfPresent
(
"thickness",
thickness_[patchI]
);
break;
case FINAL_AND_EXPANSION:
layerDict.readIfPresent
(
"finalLayerThickness",
finalLayerThickness_[patchI]
);
layerDict.readIfPresent
(
"expansionRatio",
expansionRatio_[patchI]
);
break;
case TOTAL_AND_EXPANSION:
layerDict.readIfPresent
(
"thickness",
thickness_[patchI]
);
layerDict.readIfPresent
(
"expansionRatio",
expansionRatio_[patchI]
);
break;
default:
FatalIOErrorIn
(
"layerParameters::layerParameters(..)",
dict
) << "problem." << exit(FatalIOError);
break;
}
layerDict.readIfPresent
(
"minThickness",
minThickness_[patchI]
);
}
}
}
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::scalar Foam::layerParameters::layerThickness
(
const label nLayers,
const scalar firstLayerThickess,
const scalar finalLayerThickess,
const scalar totalThickness,
const scalar expansionRatio
) const
{
switch (layerSpec_)
{
case FIRST_AND_TOTAL:
case FINAL_AND_TOTAL:
case TOTAL_AND_EXPANSION:
{
return totalThickness;
}
break;
case FIRST_AND_EXPANSION:
{
if (mag(expansionRatio-1) < SMALL)
{
return firstLayerThickess * nLayers;
}
else
{
return firstLayerThickess *
(1.0 - pow(expansionRatio, nLayers))
/ (1.0 - expansionRatio);
}
}
break;
case FINAL_AND_EXPANSION:
{
if (mag(expansionRatio-1) < SMALL)
{
return finalLayerThickess * nLayers;
}
else
{
scalar invExpansion = 1.0 / expansionRatio;
return finalLayerThickess *
(1.0 - pow(invExpansion, nLayers))
/ (1.0 - invExpansion);
}
}
break;
default:
{
FatalErrorIn("layerParameters::layerThickness(..)")
<< "Illegal thickness specification " << layerSpec_
<< exit(FatalError);
return -VGREAT;
}
}
}
Foam::scalar Foam::layerParameters::layerExpansionRatio
(
const label nLayers,
const scalar firstLayerThickess,
const scalar finalLayerThickess,
const scalar totalThickness,
const scalar expansionRatio
) const
{
switch (layerSpec_)
{
case FIRST_AND_EXPANSION:
case FINAL_AND_EXPANSION:
case TOTAL_AND_EXPANSION:
{
return expansionRatio;
}
break;
case FIRST_AND_TOTAL:
{
return layerExpansionRatio
(
nLayers,
totalThickness/firstLayerThickess
);
}
break;
case FINAL_AND_TOTAL:
{
return
1.0
/ layerExpansionRatio
(
nLayers,
totalThickness/finalLayerThickess
);
}
break;
default:
{
FatalErrorIn("layerParameters::layerThickness(..)")
<< "Illegal thickness specification" << exit(FatalError);
return -VGREAT;
}
}
}
Foam::scalar Foam::layerParameters::firstLayerThickness
(
const label nLayers,
const scalar firstLayerThickess,
const scalar finalLayerThickess,
const scalar totalThickness,
const scalar expansionRatio
) const
{
switch (layerSpec_)
{
case FIRST_AND_EXPANSION:
case FIRST_AND_TOTAL:
{
return firstLayerThickess;
}
case FINAL_AND_EXPANSION:
{
return finalLayerThickess*pow(1.0/expansionRatio, nLayers-1);
}
break;
case FINAL_AND_TOTAL:
{
scalar r = layerExpansionRatio
(
nLayers,
firstLayerThickess,
finalLayerThickess,
totalThickness,
expansionRatio
);
return finalLayerThickess/pow(r, nLayers-1);
}
break;
case TOTAL_AND_EXPANSION:
{
scalar r = finalLayerThicknessRatio
(
nLayers,
expansionRatio
);
scalar finalThickness = r*totalThickness;
return finalThickness/pow(expansionRatio, nLayers-1);
}
break;
default:
{
FatalErrorIn("layerParameters::layerThickness(..)")
<< "Illegal thickness specification" << exit(FatalError);
return -VGREAT;
}
}
}
Foam::scalar Foam::layerParameters::finalLayerThicknessRatio
(
const label nLayers,
const scalar expansionRatio
) const
{
if (nLayers > 0)
{
if (mag(expansionRatio-1) < SMALL)
{
return 1.0/nLayers;
}
else
{
return
pow(expansionRatio, nLayers - 1)
* (1.0 - expansionRatio)
/ (1.0 - pow(expansionRatio, nLayers));
}
}
else
{
return 0.0;
}
}
// ************************************************************************* //