openfoam/applications/utilities/preProcessing/setFields/setFields.C
Henry Weller ea5401c770 GeometricField::GeometricBoundaryField -> GeometricField::Boundary
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now.  Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e

This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
2016-04-28 07:22:02 +01:00

475 lines
12 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Description
Set values on a selected set of cells/patchfaces through a dictionary.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "fvMesh.H"
#include "topoSetSource.H"
#include "cellSet.H"
#include "faceSet.H"
#include "volFields.H"
using namespace Foam;
template<class Type>
bool setCellFieldType
(
const word& fieldTypeDesc,
const fvMesh& mesh,
const labelList& selectedCells,
Istream& fieldValueStream
)
{
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
if (fieldTypeDesc != fieldType::typeName + "Value")
{
return false;
}
word fieldName(fieldValueStream);
// Check the current time directory
IOobject fieldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ
);
// Check the "constant" directory
if (!fieldHeader.headerOk())
{
fieldHeader = IOobject
(
fieldName,
mesh.time().constant(),
mesh,
IOobject::MUST_READ
);
}
// Check field exists
if (fieldHeader.headerOk())
{
Info<< " Setting internal values of "
<< fieldHeader.headerClassName()
<< " " << fieldName << endl;
fieldType field(fieldHeader, mesh);
const Type& value = pTraits<Type>(fieldValueStream);
if (selectedCells.size() == field.size())
{
field.internalField() = value;
}
else
{
forAll(selectedCells, celli)
{
field[selectedCells[celli]] = value;
}
}
typename GeometricField<Type, fvPatchField, volMesh>::
Boundary& fieldBf = field.boundaryFieldRef();
forAll(field.boundaryField(), patchi)
{
fieldBf[patchi] = fieldBf[patchi].patchInternalField();
}
if (!field.write())
{
FatalErrorInFunction
<< "Failed writing field " << fieldName << endl;
}
}
else
{
WarningInFunction
<< "Field " << fieldName << " not found" << endl;
// Consume value
(void)pTraits<Type>(fieldValueStream);
}
return true;
}
class setCellField
{
public:
setCellField()
{}
autoPtr<setCellField> clone() const
{
return autoPtr<setCellField>(new setCellField());
}
class iNew
{
const fvMesh& mesh_;
const labelList& selectedCells_;
public:
iNew(const fvMesh& mesh, const labelList& selectedCells)
:
mesh_(mesh),
selectedCells_(selectedCells)
{}
autoPtr<setCellField> operator()(Istream& fieldValues) const
{
word fieldType(fieldValues);
if
(
!(
setCellFieldType<scalar>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<vector>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<sphericalTensor>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<symmTensor>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<tensor>
(fieldType, mesh_, selectedCells_, fieldValues)
)
)
{
WarningInFunction
<< "field type " << fieldType << " not currently supported"
<< endl;
}
return autoPtr<setCellField>(new setCellField());
}
};
};
template<class Type>
bool setFaceFieldType
(
const word& fieldTypeDesc,
const fvMesh& mesh,
const labelList& selectedFaces,
Istream& fieldValueStream
)
{
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
if (fieldTypeDesc != fieldType::typeName + "Value")
{
return false;
}
word fieldName(fieldValueStream);
// Check the current time directory
IOobject fieldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ
);
// Check the "constant" directory
if (!fieldHeader.headerOk())
{
fieldHeader = IOobject
(
fieldName,
mesh.time().constant(),
mesh,
IOobject::MUST_READ
);
}
// Check field exists
if (fieldHeader.headerOk())
{
Info<< " Setting patchField values of "
<< fieldHeader.headerClassName()
<< " " << fieldName << endl;
fieldType field(fieldHeader, mesh);
const Type& value = pTraits<Type>(fieldValueStream);
// Create flat list of selected faces and their value.
Field<Type> allBoundaryValues(mesh.nFaces()-mesh.nInternalFaces());
forAll(field.boundaryField(), patchi)
{
SubField<Type>
(
allBoundaryValues,
field.boundaryField()[patchi].size(),
field.boundaryField()[patchi].patch().start()
- mesh.nInternalFaces()
) = field.boundaryField()[patchi];
}
// Override
bool hasWarned = false;
labelList nChanged
(
returnReduce(field.boundaryField().size(), maxOp<label>()),
0
);
forAll(selectedFaces, i)
{
label facei = selectedFaces[i];
if (mesh.isInternalFace(facei))
{
if (!hasWarned)
{
hasWarned = true;
WarningInFunction
<< "Ignoring internal face " << facei
<< ". Suppressing further warnings." << endl;
}
}
else
{
label bFacei = facei-mesh.nInternalFaces();
allBoundaryValues[bFacei] = value;
nChanged[mesh.boundaryMesh().patchID()[bFacei]]++;
}
}
Pstream::listCombineGather(nChanged, plusEqOp<label>());
Pstream::listCombineScatter(nChanged);
typename GeometricField<Type, fvPatchField, volMesh>::
Boundary& fieldBf = field.boundaryFieldRef();
// Reassign.
forAll(field.boundaryField(), patchi)
{
if (nChanged[patchi] > 0)
{
Info<< " On patch "
<< field.boundaryField()[patchi].patch().name()
<< " set " << nChanged[patchi] << " values" << endl;
fieldBf[patchi] == SubField<Type>
(
allBoundaryValues,
fieldBf[patchi].size(),
fieldBf[patchi].patch().start()
- mesh.nInternalFaces()
);
}
}
if (!field.write())
{
FatalErrorInFunction
<< "Failed writing field " << field.name() << exit(FatalError);
}
}
else
{
WarningInFunction
<< "Field " << fieldName << " not found" << endl;
// Consume value
(void)pTraits<Type>(fieldValueStream);
}
return true;
}
class setFaceField
{
public:
setFaceField()
{}
autoPtr<setFaceField> clone() const
{
return autoPtr<setFaceField>(new setFaceField());
}
class iNew
{
const fvMesh& mesh_;
const labelList& selectedFaces_;
public:
iNew(const fvMesh& mesh, const labelList& selectedFaces)
:
mesh_(mesh),
selectedFaces_(selectedFaces)
{}
autoPtr<setFaceField> operator()(Istream& fieldValues) const
{
word fieldType(fieldValues);
if
(
!(
setFaceFieldType<scalar>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<vector>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<sphericalTensor>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<symmTensor>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<tensor>
(fieldType, mesh_, selectedFaces_, fieldValues)
)
)
{
WarningInFunction
<< "field type " << fieldType << " not currently supported"
<< endl;
}
return autoPtr<setFaceField>(new setFaceField());
}
};
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
Info<< "Reading setFieldsDict\n" << endl;
IOdictionary setFieldsDict
(
IOobject
(
"setFieldsDict",
runTime.system(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
if (setFieldsDict.found("defaultFieldValues"))
{
Info<< "Setting field default values" << endl;
PtrList<setCellField> defaultFieldValues
(
setFieldsDict.lookup("defaultFieldValues"),
setCellField::iNew(mesh, labelList(mesh.nCells()))
);
Info<< endl;
}
Info<< "Setting field region values" << endl;
PtrList<entry> regions(setFieldsDict.lookup("regions"));
forAll(regions, regionI)
{
const entry& region = regions[regionI];
autoPtr<topoSetSource> source =
topoSetSource::New(region.keyword(), mesh, region.dict());
if (source().setType() == topoSetSource::CELLSETSOURCE)
{
cellSet selectedCellSet
(
mesh,
"cellSet",
mesh.nCells()/10+1 // Reasonable size estimate.
);
source->applyToSet
(
topoSetSource::NEW,
selectedCellSet
);
PtrList<setCellField> fieldValues
(
region.dict().lookup("fieldValues"),
setCellField::iNew(mesh, selectedCellSet.toc())
);
}
else if (source().setType() == topoSetSource::FACESETSOURCE)
{
faceSet selectedFaceSet
(
mesh,
"faceSet",
(mesh.nFaces()-mesh.nInternalFaces())/10+1
);
source->applyToSet
(
topoSetSource::NEW,
selectedFaceSet
);
PtrList<setFaceField> fieldValues
(
region.dict().lookup("fieldValues"),
setFaceField::iNew(mesh, selectedFaceSet.toc())
);
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //