openfoam/applications/solvers/multiphase/multiphaseEulerFoam/multiphaseSystem/multiphaseSystem.C

933 lines
22 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseSystem.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "fixedValueFvsPatchFields.H"
#include "Time.H"
#include "subCycle.H"
#include "MULES.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcAverage.H"
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
const Foam::scalar Foam::multiphaseSystem::convertToRad =
Foam::constant::mathematical::pi/180.0;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::multiphaseSystem::calcAlphas()
{
scalar level = 0.0;
alphas_ == 0.0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
alphas_ += level*iter();
level += 1.0;
}
alphas_.correctBoundaryConditions();
}
void Foam::multiphaseSystem::solveAlphas()
{
surfaceScalarField phic(mag(phi_/mesh_.magSf()));
PtrList<surfaceScalarField> phiAlphaCorrs(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase1 = iter();
volScalarField& alpha1 = phase1;
phase1.phiAlpha() =
dimensionedScalar("0", dimensionSet(0, 3, -1, 0, 0), 0);
phiAlphaCorrs.set
(
phasei,
new surfaceScalarField
(
fvc::flux
(
phi_,
phase1,
"div(phi," + alpha1.name() + ')'
)
)
);
surfaceScalarField& phiAlphaCorr = phiAlphaCorrs[phasei];
forAllIter(PtrDictionary<phaseModel>, phases_, iter2)
{
phaseModel& phase2 = iter2();
volScalarField& alpha2 = phase2;
if (&phase2 == &phase1) continue;
surfaceScalarField phir
(
(phase1.phi() - phase2.phi())
+ min(cAlpha(phase1, phase2)*phic, max(phic))
*nHatf(phase1, phase2)
);
word phirScheme
(
"div(phir," + alpha2.name() + ',' + alpha1.name() + ')'
);
phiAlphaCorr += fvc::flux
(
-fvc::flux(-phir, phase2, phirScheme),
phase1,
phirScheme
);
}
MULES::limit
(
geometricOneField(),
phase1,
phi_,
phiAlphaCorr,
zeroField(),
zeroField(),
1,
0,
3,
true
);
phasei++;
}
MULES::limitSum(phiAlphaCorrs);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("sumAlpha", dimless, 0)
);
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase1 = iter();
surfaceScalarField& phiAlpha = phiAlphaCorrs[phasei];
phiAlpha += upwind<scalar>(mesh_, phi_).flux(phase1);
MULES::explicitSolve
(
geometricOneField(),
phase1,
phiAlpha,
zeroField(),
zeroField()
);
phase1.phiAlpha() += phiAlpha;
Info<< phase1.name() << " volume fraction, min, max = "
<< phase1.weightedAverage(mesh_.V()).value()
<< ' ' << min(phase1).value()
<< ' ' << max(phase1).value()
<< endl;
sumAlpha += phase1;
phasei++;
}
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
calcAlphas();
}
Foam::dimensionedScalar Foam::multiphaseSystem::sigma
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
scalarCoeffTable::const_iterator sigma
(
sigmas_.find(interfacePair(phase1, phase2))
);
if (sigma == sigmas_.end())
{
FatalErrorIn
(
"multiphaseSystem::sigma(const phaseModel& phase1,"
"const phaseModel& phase2) const"
) << "Cannot find interface " << interfacePair(phase1, phase2)
<< " in list of sigma values"
<< exit(FatalError);
}
return dimensionedScalar("sigma", dimSigma_, sigma());
}
Foam::scalar Foam::multiphaseSystem::cAlpha
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
scalarCoeffTable::const_iterator cAlpha
(
cAlphas_.find(interfacePair(phase1, phase2))
);
if (cAlpha == cAlphas_.end())
{
FatalErrorIn
(
"multiphaseSystem::cAlpha"
"(const phaseModel& phase1, const phaseModel& phase2) const"
) << "Cannot find interface " << interfacePair(phase1, phase2)
<< " in list of cAlpha values"
<< exit(FatalError);
}
return cAlpha();
}
Foam::dimensionedScalar Foam::multiphaseSystem::Cvm
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
scalarCoeffTable::const_iterator Cvm
(
Cvms_.find(interfacePair(phase1, phase2))
);
if (Cvm != Cvms_.end())
{
return Cvm()*phase2.rho();
}
Cvm = Cvms_.find(interfacePair(phase2, phase1));
if (Cvm != Cvms_.end())
{
return Cvm()*phase1.rho();
}
FatalErrorIn
(
"multiphaseSystem::sigma"
"(const phaseModel& phase1, const phaseModel& phase2) const"
) << "Cannot find interface " << interfacePair(phase1, phase2)
<< " in list of sigma values"
<< exit(FatalError);
return Cvm()*phase2.rho();
}
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseSystem::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
// Correction for the boundary condition on the unit normal nHat on
// walls to produce the correct contact angle.
// The dynamic contact angle is calculated from the component of the
// velocity on the direction of the interface, parallel to the wall.
void Foam::multiphaseSystem::correctContactAngle
(
const phaseModel& phase1,
const phaseModel& phase2,
surfaceVectorField::GeometricBoundaryField& nHatb
) const
{
const volScalarField::GeometricBoundaryField& gbf
= phase1.boundaryField();
const fvBoundaryMesh& boundary = mesh_.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
{
const alphaContactAngleFvPatchScalarField& acap =
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
vectorField& nHatPatch = nHatb[patchi];
vectorField AfHatPatch
(
mesh_.Sf().boundaryField()[patchi]
/mesh_.magSf().boundaryField()[patchi]
);
alphaContactAngleFvPatchScalarField::thetaPropsTable::
const_iterator tp =
acap.thetaProps().find(interfacePair(phase1, phase2));
if (tp == acap.thetaProps().end())
{
FatalErrorIn
(
"multiphaseSystem::correctContactAngle"
"(const phaseModel& phase1, const phaseModel& phase2, "
"fvPatchVectorFieldField& nHatb) const"
) << "Cannot find interface " << interfacePair(phase1, phase2)
<< "\n in table of theta properties for patch "
<< acap.patch().name()
<< exit(FatalError);
}
bool matched = (tp.key().first() == phase1.name());
scalar theta0 = convertToRad*tp().theta0(matched);
scalarField theta(boundary[patchi].size(), theta0);
scalar uTheta = tp().uTheta();
// Calculate the dynamic contact angle if required
if (uTheta > SMALL)
{
scalar thetaA = convertToRad*tp().thetaA(matched);
scalar thetaR = convertToRad*tp().thetaR(matched);
// Calculated the component of the velocity parallel to the wall
vectorField Uwall
(
phase1.U().boundaryField()[patchi].patchInternalField()
- phase1.U().boundaryField()[patchi]
);
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
// Find the direction of the interface parallel to the wall
vectorField nWall
(
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
);
// Normalise nWall
nWall /= (mag(nWall) + SMALL);
// Calculate Uwall resolved normal to the interface parallel to
// the interface
scalarField uwall(nWall & Uwall);
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
}
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatPatch & AfHatPatch);
scalarField b1(cos(theta));
scalarField b2(nHatPatch.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatPatch = a*AfHatPatch + b*nHatPatch;
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
}
}
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::K
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(phase1, phase2);
correctContactAngle(phase1, phase2, tnHatfv().boundaryField());
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseSystem::multiphaseSystem
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
transportModel(U, phi),
phases_(lookup("phases"), phaseModel::iNew(U.mesh())),
mesh_(U.mesh()),
phi_(phi),
alphas_
(
IOobject
(
"alphas",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh_,
dimensionedScalar("alphas", dimless, 0.0),
zeroGradientFvPatchScalarField::typeName
),
sigmas_(lookup("sigmas")),
dimSigma_(1, 0, -2, 0, 0),
cAlphas_(lookup("interfaceCompression")),
Cvms_(lookup("virtualMass")),
deltaN_
(
"deltaN",
1e-8/pow(average(mesh_.V()), 1.0/3.0)
)
{
calcAlphas();
alphas_.write();
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModelTable_.add(iter());
}
interfaceDictTable dragModelsDict(lookup("drag"));
forAllConstIter(interfaceDictTable, dragModelsDict, iter)
{
dragModels_.insert
(
iter.key(),
dragModel::New
(
iter(),
*phaseModelTable_.find(iter.key().first())(),
*phaseModelTable_.find(iter.key().second())()
).ptr()
);
}
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::rho() const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<volScalarField> trho = iter()*iter().rho();
for (++iter; iter != phases_.end(); ++iter)
{
trho() += iter()*iter().rho();
}
return trho;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::nu() const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<volScalarField> tnu = iter()*iter().nu();
for (++iter; iter != phases_.end(); ++iter)
{
tnu() += iter()*iter().nu();
}
return tnu;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::Cvm
(
const phaseModel& phase
) const
{
tmp<volScalarField> tCvm
(
new volScalarField
(
IOobject
(
"Cvm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"Cvm",
dimensionSet(1, -3, 0, 0, 0),
0
)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase)
{
tCvm() += Cvm(phase, phase2)*phase2;
}
}
return tCvm;
}
Foam::tmp<Foam::volVectorField> Foam::multiphaseSystem::Svm
(
const phaseModel& phase
) const
{
tmp<volVectorField> tSvm
(
new volVectorField
(
IOobject
(
"Svm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector
(
"Svm",
dimensionSet(1, -2, -2, 0, 0),
vector::zero
)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase)
{
tSvm() += Cvm(phase, phase2)*phase2*phase2.DDtU();
}
}
// Remove lift at fixed-flux boundaries
forAll(phase.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase.phi().boundaryField()[patchi]
)
)
{
tSvm().boundaryField()[patchi] = vector::zero;
}
}
return tSvm;
}
Foam::autoPtr<Foam::multiphaseSystem::dragCoeffFields>
Foam::multiphaseSystem::dragCoeffs() const
{
autoPtr<dragCoeffFields> dragCoeffsPtr(new dragCoeffFields);
forAllConstIter(dragModelTable, dragModels_, iter)
{
const dragModel& dm = *iter();
volScalarField* Kptr =
(
max
(
//fvc::average(dm.phase1()*dm.phase2()),
//fvc::average(dm.phase1())*fvc::average(dm.phase2()),
dm.phase1()*dm.phase2(),
dm.residualPhaseFraction()
)
*dm.K
(
max
(
mag(dm.phase1().U() - dm.phase2().U()),
dm.residualSlip()
)
)
).ptr();
// Remove drag at fixed-flux boundaries
forAll(dm.phase1().phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
dm.phase1().phi().boundaryField()[patchi]
)
)
{
Kptr->boundaryField()[patchi] = 0.0;
}
}
dragCoeffsPtr().insert(iter.key(), Kptr);
}
return dragCoeffsPtr;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::dragCoeff
(
const phaseModel& phase,
const dragCoeffFields& dragCoeffs
) const
{
tmp<volScalarField> tdragCoeff
(
new volScalarField
(
IOobject
(
"dragCoeff",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"dragCoeff",
dimensionSet(1, -3, -1, 0, 0),
0
)
)
);
dragModelTable::const_iterator dmIter = dragModels_.begin();
dragCoeffFields::const_iterator dcIter = dragCoeffs.begin();
for
(
;
dmIter != dragModels_.end() && dcIter != dragCoeffs.end();
++dmIter, ++dcIter
)
{
if
(
&phase == &dmIter()->phase1()
|| &phase == &dmIter()->phase2()
)
{
tdragCoeff() += *dcIter();
}
}
return tdragCoeff;
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseSystem::surfaceTensionForce() const
{
tmp<surfaceScalarField> tstf
(
new surfaceScalarField
(
IOobject
(
"surfaceTensionForce",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"surfaceTensionForce",
dimensionSet(1, -2, -2, 0, 0),
0.0
)
)
);
surfaceScalarField& stf = tstf();
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter1)
{
const phaseModel& phase1 = iter1();
PtrDictionary<phaseModel>::const_iterator iter2 = iter1;
++iter2;
for (; iter2 != phases_.end(); ++iter2)
{
const phaseModel& phase2 = iter2();
stf += sigma(phase1, phase2)
*fvc::interpolate(K(phase1, phase2))*
(
fvc::interpolate(phase2)*fvc::snGrad(phase1)
- fvc::interpolate(phase1)*fvc::snGrad(phase2)
);
}
}
return tstf;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseSystem::nearInterface() const
{
tmp<volScalarField> tnearInt
(
new volScalarField
(
IOobject
(
"nearInterface",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("nearInterface", dimless, 0.0)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
tnearInt() = max(tnearInt(), pos(iter() - 0.01)*pos(0.99 - iter()));
}
return tnearInt;
}
void Foam::multiphaseSystem::solve()
{
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
iter().correct();
}
const Time& runTime = mesh_.time();
const dictionary& pimpleDict = mesh_.solutionDict().subDict("PIMPLE");
label nAlphaSubCycles(readLabel(pimpleDict.lookup("nAlphaSubCycles")));
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
PtrList<volScalarField> alpha0s(phases_.size());
PtrList<surfaceScalarField> phiSums(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
alpha0s.set
(
phasei,
new volScalarField(alpha.oldTime())
);
phiSums.set
(
phasei,
new surfaceScalarField
(
IOobject
(
"phiSum" + alpha.name(),
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("0", dimensionSet(0, 3, -1, 0, 0), 0)
)
);
phasei++;
}
for
(
subCycleTime alphaSubCycle
(
const_cast<Time&>(runTime),
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
solveAlphas();
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phiSums[phasei] += (runTime.deltaT()/totalDeltaT)*iter().phi();
phasei++;
}
}
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
phase.phi() = phiSums[phasei];
// Correct the time index of the field
// to correspond to the global time
alpha.timeIndex() = runTime.timeIndex();
// Reset the old-time field value
alpha.oldTime() = alpha0s[phasei];
alpha.oldTime().timeIndex() = runTime.timeIndex();
phasei++;
}
}
else
{
solveAlphas();
}
}
bool Foam::multiphaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
PtrList<entry> phaseData(lookup("phases"));
label phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
readOK &= iter().read(phaseData[phasei++].dict());
}
lookup("sigmas") >> sigmas_;
lookup("interfaceCompression") >> cAlphas_;
lookup("virtualMass") >> Cvms_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //