openfoam/src/errorEstimation/errorEstimate/resErrorLaplacian.C

293 lines
6.8 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "resErrorLaplacian.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace resError
{
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
surfaceScalarField Gamma
(
IOobject
(
"gamma",
vf.time().constant(),
vf.db(),
IOobject::NO_READ
),
vf.mesh(),
dimensionedScalar("1", dimless, 1.0)
);
return resError::laplacian(Gamma, vf);
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const dimensionedScalar& gamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
surfaceScalarField Gamma
(
IOobject
(
gamma.name(),
vf.time().timeName(),
vf.db(),
IOobject::NO_READ
),
vf.mesh(),
gamma
);
return resError::laplacian(Gamma, vf);
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const volScalarField& gamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
return resError::laplacian(fvc::interpolate(gamma), vf);
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const tmp<volScalarField>& tgamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
tmp<errorEstimate<Type> > Laplacian(resError::laplacian(tgamma(), vf));
tgamma.clear();
return Laplacian;
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const surfaceScalarField& gamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
const fvMesh& mesh = vf.mesh();
const scalarField& vols = mesh.V();
const surfaceVectorField& Sf = mesh.Sf();
const surfaceScalarField magSf(mesh.magSf());
const fvPatchList& patches = mesh.boundary();
const labelUList& owner = mesh.owner();
const labelUList& neighbour = mesh.neighbour();
const surfaceScalarField& delta =
mesh.surfaceInterpolation::deltaCoeffs();
Field<Type> res(vols.size(), pTraits<Type>::zero);
scalarField aNorm(vols.size(), 0.0);
// Calculate gradient of the solution
GeometricField
<
typename outerProduct<vector, Type>::type, fvPatchField, volMesh
>
gradVf(fvc::grad(vf));
// Internal faces
forAll(owner, faceI)
{
// Owner
// Subtract diffusion
res[owner[faceI]] -=
gamma[faceI]*(Sf[faceI] & gradVf[owner[faceI]]);
aNorm[owner[faceI]] += delta[faceI]*gamma[faceI]*magSf[faceI];
// Neighbour
// Subtract diffusion
res[neighbour[faceI]] +=
gamma[faceI]*(Sf[faceI] & gradVf[neighbour[faceI]]);
aNorm[neighbour[faceI]] += delta[faceI]*gamma[faceI]*magSf[faceI];
}
forAll(patches, patchI)
{
const vectorField& patchSf = Sf.boundaryField()[patchI];
const scalarField& patchMagSf = magSf.boundaryField()[patchI];
const scalarField& patchGamma = gamma.boundaryField()[patchI];
const scalarField& patchDelta = delta.boundaryField()[patchI];
const labelList& fCells = patches[patchI].faceCells();
forAll(fCells, faceI)
{
// Subtract diffusion
res[fCells[faceI]] -=
patchGamma[faceI]*
(
patchSf[faceI] & gradVf[fCells[faceI]]
);
aNorm[fCells[faceI]] +=
patchDelta[faceI]*patchGamma[faceI]*patchMagSf[faceI];
}
}
res /= vols;
aNorm /= vols;
return tmp<errorEstimate<Type> >
(
new errorEstimate<Type>
(
vf,
delta.dimensions()*gamma.dimensions()*magSf.dimensions()
*vf.dimensions(),
res,
aNorm
)
);
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const tmp<surfaceScalarField>& tgamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
tmp<errorEstimate<Type> > tresError(resError::laplacian(tgamma(), vf));
tgamma.clear();
return tresError;
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const volTensorField& gamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
const fvMesh& mesh = vf.mesh();
return resError::laplacian
(
(mesh.Sf() & fvc::interpolate(gamma) & mesh.Sf())
/sqr(mesh.magSf()),
vf
);
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const tmp<volTensorField>& tgamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
tmp<errorEstimate<Type> > Laplacian = resError::laplacian(tgamma(), vf);
tgamma.clear();
return Laplacian;
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const surfaceTensorField& gamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
const fvMesh& mesh = vf.mesh();
return resError::laplacian
(
(mesh.Sf() & gamma & mesh.Sf())/sqr(mesh.magSf()),
vf
);
}
template<class Type>
tmp<errorEstimate<Type> >
laplacian
(
const tmp<surfaceTensorField>& tgamma,
const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
tmp<errorEstimate<Type> > Laplacian = resError::laplacian(tgamma(), vf);
tgamma.clear();
return Laplacian;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace resError
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //