261 lines
7.2 KiB
C
261 lines
7.2 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | www.openfoam.com
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
Copyright (C) 2018-2022 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "energySpectrum.H"
|
|
#include "fft.H"
|
|
#include "fvMesh.H"
|
|
#include "boundBox.H"
|
|
#include "OFstream.H"
|
|
#include "mathematicalConstants.H"
|
|
#include "volFields.H"
|
|
#include "addToRunTimeSelectionTable.H"
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
namespace functionObjects
|
|
{
|
|
defineTypeNameAndDebug(energySpectrum, 0);
|
|
addToRunTimeSelectionTable(functionObject, energySpectrum, dictionary);
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
|
|
|
|
void Foam::functionObjects::energySpectrum::writeFileHeader(Ostream& os)
|
|
{
|
|
writeHeader(os, "Turbulence energy spectra");
|
|
|
|
writeCommented(os, "kappa E(kappa)");
|
|
|
|
os << endl;
|
|
}
|
|
|
|
|
|
void Foam::functionObjects::energySpectrum::calcAndWriteSpectrum
|
|
(
|
|
const vectorField& U,
|
|
const vectorField& C,
|
|
const vector& c0,
|
|
const vector& deltaC,
|
|
const Vector<int>& N,
|
|
const scalar kappaNorm
|
|
)
|
|
{
|
|
Log << "Computing FFT" << endl;
|
|
const complexVectorField Uf
|
|
(
|
|
fft::forwardTransform
|
|
(
|
|
ComplexField(U, vector::zero),
|
|
List<int>({N.x(), N.y(), N.z()})
|
|
)
|
|
/scalar(cmptProduct(N))
|
|
);
|
|
|
|
|
|
Log << "Computing wave numbers" << endl;
|
|
const label nMax = cmptMax(N);
|
|
scalarField kappa(nMax);
|
|
forAll(kappa, kappai)
|
|
{
|
|
kappa[kappai] = kappai*kappaNorm;
|
|
}
|
|
|
|
Log << "Computing energy spectrum" << endl;
|
|
scalarField E(nMax, Zero);
|
|
const scalarField Ec(0.5*magSqr(Uf));
|
|
forAll(C, celli)
|
|
{
|
|
point Cc(C[celli] - c0);
|
|
label i = round((Cc.x() - 0.5*deltaC.x())/(deltaC.x())*(N.x() - 1));
|
|
label j = round((Cc.y() - 0.5*deltaC.y())/(deltaC.y())*(N.y() - 1));
|
|
label k = round((Cc.z() - 0.5*deltaC.z())/(deltaC.z())*(N.z() - 1));
|
|
label kappai = round(Foam::sqrt(scalar(i*i + j*j + k*k)));
|
|
|
|
E[kappai] += Ec[celli];
|
|
}
|
|
|
|
E /= kappaNorm;
|
|
|
|
Log << "Writing spectrum" << endl;
|
|
autoPtr<OFstream> osPtr = newFileAtTime(name(), time_.value());
|
|
OFstream& os = osPtr.ref();
|
|
writeFileHeader(os);
|
|
|
|
forAll(kappa, kappai)
|
|
{
|
|
os << kappa[kappai] << tab << E[kappai] << nl;
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::functionObjects::energySpectrum::energySpectrum
|
|
(
|
|
const word& name,
|
|
const Time& runTime,
|
|
const dictionary& dict
|
|
)
|
|
:
|
|
fvMeshFunctionObject(name, runTime, dict),
|
|
writeFile(mesh_, name),
|
|
cellAddr_(mesh_.nCells()),
|
|
UName_("U"),
|
|
N_(Zero),
|
|
c0_(Zero),
|
|
deltaC_(Zero),
|
|
kappaNorm_(0)
|
|
{
|
|
read(dict);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
bool Foam::functionObjects::energySpectrum::read(const dictionary& dict)
|
|
{
|
|
fvMeshFunctionObject::read(dict);
|
|
writeFile::read(dict);
|
|
|
|
dict.readIfPresent("U", UName_);
|
|
|
|
const boundBox meshBb(mesh_.bounds());
|
|
|
|
// Assume all cells are the same size...
|
|
boundBox cellBb(mesh_.cellBb(0));
|
|
|
|
const vector L(meshBb.span());
|
|
const vector nCellXYZ(cmptDivide(L, cellBb.span()));
|
|
|
|
N_ = Vector<int>
|
|
(
|
|
round(nCellXYZ.x()),
|
|
round(nCellXYZ.z()),
|
|
round(nCellXYZ.z())
|
|
);
|
|
|
|
// Check that the mesh is a structured box
|
|
vector cellDx(cellBb.span());
|
|
vector expectedMax(N_.x()*cellDx.x(), N_.y()*cellDx.y(), N_.z()*cellDx.z());
|
|
vector relativeSize(cmptDivide(L, expectedMax));
|
|
for (direction i = 0; i < 3; ++i)
|
|
{
|
|
if (mag(relativeSize[i] - 1) > 1e-3)
|
|
{
|
|
FatalErrorInFunction
|
|
<< name() << " function object is only appropriate for "
|
|
<< "isotropic structured IJK meshes. Mesh extents: " << L
|
|
<< ", computed IJK mesh extents: " << expectedMax
|
|
<< exit(FatalError);
|
|
}
|
|
}
|
|
Log << "Mesh extents (deltax,deltay,deltaz): " << L << endl;
|
|
Log << "Number of cells (Nx,Ny,Nz): " << N_ << endl;
|
|
|
|
// Map into i-j-k co-ordinates
|
|
const vectorField& C = mesh_.C();
|
|
c0_ = returnReduce(min(C), minOp<vector>());
|
|
deltaC_ = returnReduce(max(C), maxOp<vector>());
|
|
deltaC_ -= c0_;
|
|
|
|
forAll(C, celli)
|
|
{
|
|
label i = round((C[celli].x() - c0_.x())/(deltaC_.x())*(N_.x() - 1));
|
|
label j = round((C[celli].y() - c0_.y())/(deltaC_.y())*(N_.y() - 1));
|
|
label k = round((C[celli].z() - c0_.z())/(deltaC_.z())*(N_.z() - 1));
|
|
|
|
cellAddr_[celli] = k + j*N_.y() + i*N_.y()*N_.z();
|
|
}
|
|
|
|
kappaNorm_ = constant::mathematical::twoPi/cmptMax(L);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Foam::functionObjects::energySpectrum::execute()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Foam::functionObjects::energySpectrum::write()
|
|
{
|
|
const auto& U = mesh_.lookupObject<volVectorField>(UName_);
|
|
const vectorField& Uc = U.primitiveField();
|
|
const vectorField& C = mesh_.C();
|
|
|
|
if (Pstream::parRun())
|
|
{
|
|
PstreamBuffers pBufs(Pstream::commsTypes::nonBlocking);
|
|
|
|
{
|
|
UOPstream toMaster(Pstream::masterNo(), pBufs);
|
|
toMaster << Uc << C << cellAddr_;
|
|
}
|
|
|
|
pBufs.finishedGathers();
|
|
|
|
if (Pstream::master())
|
|
{
|
|
const label nGlobalCells(cmptProduct(N_));
|
|
vectorField Uijk(nGlobalCells);
|
|
vectorField Cijk(nGlobalCells);
|
|
|
|
for (const int proci : Pstream::allProcs())
|
|
{
|
|
UIPstream fromProc(proci, pBufs);
|
|
vectorField Up;
|
|
vectorField Cp;
|
|
labelList cellAddrp;
|
|
fromProc >> Up >> Cp >> cellAddrp;
|
|
UIndirectList<vector>(Uijk, cellAddrp) = Up;
|
|
UIndirectList<vector>(Cijk, cellAddrp) = Cp;
|
|
}
|
|
|
|
calcAndWriteSpectrum(Uijk, Cijk, c0_, deltaC_, N_, kappaNorm_);
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
vectorField Uijk(Uc, cellAddr_);
|
|
vectorField Cijk(C, cellAddr_);
|
|
|
|
calcAndWriteSpectrum(Uijk, Cijk, c0_, deltaC_, N_, kappaNorm_);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|