The old separate incompressible and compressible libraries have been removed. Most of the commonly used RANS and LES models have been upgraded to the new framework but there are a few missing which will be added over the next few days, in particular the realizable k-epsilon model. Some of the less common incompressible RANS models have been introduced into the new library instantiated for incompressible flow only. If they prove to be generally useful they can be templated for compressible and multiphase application. The Spalart-Allmaras DDES and IDDES models have been thoroughly debugged, removing serious errors concerning the use of S rather than Omega. The compressible instances of the models have been augmented by a simple backward-compatible eddyDiffusivity model for thermal transport based on alphat and alphaEff. This will be replaced with a separate run-time selectable thermal transport model framework in a few weeks. For simplicity and ease of maintenance and further development the turbulent transport and wall modeling is based on nut/nuEff rather than mut/muEff for compressible models so that all forms of turbulence models can use the same wall-functions and other BCs. All turbulence model selection made in the constant/turbulenceProperties dictionary with RAS and LES as sub-dictionaries rather than in separate files which added huge complexity for multiphase. All tutorials have been updated so study the changes and update your own cases by comparison with similar cases provided. Sorry for the inconvenience in the break in backward-compatibility but this update to the turbulence modeling is an essential step in the future of OpenFOAM to allow more models to be added and maintained for a wider range of cases and physics. Over the next weeks and months more turbulence models will be added of single and multiphase flow, more additional sub-models and further development and testing of existing models. I hope this brings benefits to all OpenFOAM users. Henry G. Weller
239 lines
7.0 KiB
C
239 lines
7.0 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
applyBoundaryLayer
|
|
|
|
Description
|
|
Apply a simplified boundary-layer model to the velocity and
|
|
turbulence fields based on the 1/7th power-law.
|
|
|
|
The uniform boundary-layer thickness is either provided via the -ybl option
|
|
or calculated as the average of the distance to the wall scaled with
|
|
the thickness coefficient supplied via the option -Cbl. If both options
|
|
are provided -ybl is used.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "singlePhaseTransportModel.H"
|
|
#include "turbulentTransportModel.H"
|
|
#include "wallDist.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// turbulence constants - file-scope
|
|
static const scalar Cmu(0.09);
|
|
static const scalar kappa(0.41);
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addNote
|
|
(
|
|
"apply a simplified boundary-layer model to the velocity and\n"
|
|
"turbulence fields based on the 1/7th power-law."
|
|
);
|
|
|
|
argList::addOption
|
|
(
|
|
"ybl",
|
|
"scalar",
|
|
"specify the boundary-layer thickness"
|
|
);
|
|
argList::addOption
|
|
(
|
|
"Cbl",
|
|
"scalar",
|
|
"boundary-layer thickness as Cbl * mean distance to wall"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"writenut",
|
|
"write nut field"
|
|
);
|
|
|
|
#include "setRootCase.H"
|
|
|
|
if (!args.optionFound("ybl") && !args.optionFound("Cbl"))
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "Neither option 'ybl' or 'Cbl' have been provided to calculate "
|
|
<< "the boundary-layer thickness.\n"
|
|
<< "Please choose either 'ybl' OR 'Cbl'."
|
|
<< exit(FatalError);
|
|
}
|
|
else if (args.optionFound("ybl") && args.optionFound("Cbl"))
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "Both 'ybl' and 'Cbl' have been provided to calculate "
|
|
<< "the boundary-layer thickness.\n"
|
|
<< "Please choose either 'ybl' OR 'Cbl'."
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
#include "createTime.H"
|
|
#include "createMesh.H"
|
|
#include "createFields.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// Modify velocity by applying a 1/7th power law boundary-layer
|
|
// u/U0 = (y/ybl)^(1/7)
|
|
// assumes U0 is the same as the current cell velocity
|
|
|
|
Info<< "Setting boundary layer velocity" << nl << endl;
|
|
scalar yblv = ybl.value();
|
|
forAll(U, cellI)
|
|
{
|
|
if (y[cellI] <= yblv)
|
|
{
|
|
mask[cellI] = 1;
|
|
U[cellI] *= ::pow(y[cellI]/yblv, (1.0/7.0));
|
|
}
|
|
}
|
|
mask.correctBoundaryConditions();
|
|
|
|
Info<< "Writing U\n" << endl;
|
|
U.write();
|
|
|
|
// Update/re-write phi
|
|
#include "createPhi.H"
|
|
phi.write();
|
|
|
|
singlePhaseTransportModel laminarTransport(U, phi);
|
|
|
|
autoPtr<incompressible::turbulenceModel> turbulence
|
|
(
|
|
incompressible::turbulenceModel::New(U, phi, laminarTransport)
|
|
);
|
|
|
|
if (isA<incompressible::RASModel>(turbulence()))
|
|
{
|
|
// Calculate nut - reference nut is calculated by the turbulence model
|
|
// on its construction
|
|
tmp<volScalarField> tnut = turbulence->nut();
|
|
volScalarField& nut = tnut();
|
|
volScalarField S(mag(dev(symm(fvc::grad(U)))));
|
|
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
|
|
|
|
// do not correct BC - wall functions will 'undo' manipulation above
|
|
// by using nut from turbulence model
|
|
|
|
if (args.optionFound("writenut"))
|
|
{
|
|
Info<< "Writing nut" << endl;
|
|
nut.write();
|
|
}
|
|
|
|
|
|
//--- Read and modify turbulence fields
|
|
|
|
// Turbulence k
|
|
tmp<volScalarField> tk = turbulence->k();
|
|
volScalarField& k = tk();
|
|
scalar ck0 = pow025(Cmu)*kappa;
|
|
k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl)));
|
|
|
|
// do not correct BC - operation may use inconsistent fields wrt these
|
|
// local manipulations
|
|
// k.correctBoundaryConditions();
|
|
|
|
Info<< "Writing k\n" << endl;
|
|
k.write();
|
|
|
|
|
|
// Turbulence epsilon
|
|
tmp<volScalarField> tepsilon = turbulence->epsilon();
|
|
volScalarField& epsilon = tepsilon();
|
|
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
|
|
epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl);
|
|
|
|
// do not correct BC - wall functions will use non-updated k from
|
|
// turbulence model
|
|
// epsilon.correctBoundaryConditions();
|
|
|
|
Info<< "Writing epsilon\n" << endl;
|
|
epsilon.write();
|
|
|
|
// Turbulence omega
|
|
IOobject omegaHeader
|
|
(
|
|
"omega",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
);
|
|
|
|
if (omegaHeader.headerOk())
|
|
{
|
|
volScalarField omega(omegaHeader, mesh);
|
|
dimensionedScalar k0("VSMALL", k.dimensions(), VSMALL);
|
|
omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0);
|
|
|
|
// do not correct BC - wall functions will use non-updated k from
|
|
// turbulence model
|
|
// omega.correctBoundaryConditions();
|
|
|
|
Info<< "Writing omega\n" << endl;
|
|
omega.write();
|
|
}
|
|
|
|
// Turbulence nuTilda
|
|
IOobject nuTildaHeader
|
|
(
|
|
"nuTilda",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
);
|
|
|
|
if (nuTildaHeader.headerOk())
|
|
{
|
|
volScalarField nuTilda(nuTildaHeader, mesh);
|
|
nuTilda = nut;
|
|
|
|
// do not correct BC
|
|
// nuTilda.correctBoundaryConditions();
|
|
|
|
Info<< "Writing nuTilda\n" << endl;
|
|
nuTilda.write();
|
|
}
|
|
}
|
|
|
|
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|