Evolves an electrical potential equation \f[ \grad \left( \sigma \grad V \right) \f] where \f$ V \f$ is electrical potential and \f$\sigma\f$ is the electrical current To provide a Joule heating contribution according to: Differential form of Joule heating - power per unit volume: \f[ \frac{d(P)}{d(V)} = J \cdot E \f] where \f$ J \f$ is the current density and \f$ E \f$ the electric field. If no magnetic field is present: \f[ J = \sigma E \f] The electric field given by \f[ E = \grad V \f] Therefore: \f[ \frac{d(P)}{d(V)} = J \cdot E = (sigma E) \cdot E = (sigma \grad V) \cdot \grad V \f] Usage Isotropic (scalar) electrical conductivity \verbatim jouleHeatingSourceCoeffs { anisotropicElectricalConductivity no; // Optionally specify the conductivity as a function of // temperature // Note: if not supplied, this will be read from the time // directory sigma table ( (273 1e5) (1000 1e5) ); } \endverbatim Anisotropic (vectorial) electrical conductivity jouleHeatingSourceCoeffs { anisotropicElectricalConductivity yes; coordinateSystem { type cartesian; origin (0 0 0); coordinateRotation { type axesRotation; e1 (1 0 0); e3 (0 0 1); } } // Optionally specify sigma as a function of temperature //sigma (31900 63800 127600); // //sigma table //( // (0 (0 0 0)) // (1000 (127600 127600 127600)) //); } Where: \table Property | Description | Required | Default value T | Name of temperature field | no | T sigma | Electrical conductivity as a function of temperature |no| anisotropicElectricalConductivity | Anisotropic flag | yes | \endtable The electrical conductivity can be specified using either: - If the \c sigma entry is present the electrical conductivity is specified as a function of temperature using a Function1 type - If not present the sigma field will be read from file - If the anisotropicElectricalConductivity flag is set to 'true', sigma should be specified as a vector quantity |
||
---|---|---|
.. | ||
heatExchanger | ||
jouleHeatingSolid | ||
multiRegionHeaterRadiation |