openfoam/applications/test/matrices/EigenMatrix/Test-EigenMatrix.C
Mark Olesen 3151dacccc ENH: include <algorithm> in stdFoam.H
- was already included in many places (via UList.C templates), but now
  formalise by placing in stdFoam.H
2022-12-01 15:52:48 +00:00

542 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2020-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is derivative work of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-EigenMatrix
Description
Tests for \c EigenMatrix constructors, and member functions
using \c floatScalar, and \c doubleScalar base types.
Cross-checks were obtained from 'NumPy 1.15.1' if no theoretical
cross-check exists (like eigendecomposition relations), and
were hard-coded for elementwise comparisons.
\*---------------------------------------------------------------------------*/
#include "scalarMatrices.H"
#include "RectangularMatrix.H"
#include "SquareMatrix.H"
#include "complex.H"
#include "IOmanip.H"
#include "EigenMatrix.H"
#include "TestTools.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Create each constructor of EigenMatrix<Type>, and print output
template<class Type>
void test_constructors(Type)
{
{
Info<< "# Construct from a SquareMatrix<Type>" << nl;
const SquareMatrix<Type> A(5, Zero);
const EigenMatrix<Type> EM(A);
}
{
Info<< "# Construct from a SquareMatrix<Type> and symmetry flag" << nl;
const SquareMatrix<Type> A(5, Zero);
const EigenMatrix<Type> EM(A, true);
}
}
// Execute each member function of EigenMatrix<Type>, and print output
template<class Type>
void test_member_funcs(Type)
{
SquareMatrix<Type> A(3, Zero);
assignMatrix
(
A,
{
Type(1), Type(2), Type(3),
Type(4), Type(5), Type(6),
Type(7), Type(8), Type(9)
}
);
Info<< "# Operand: " << nl
<< " SquareMatrix = " << A << endl;
// Since eigenvalues are unique and eigenvectors are not unique,
// the bitwise comparisons are limited to eigenvalue computations.
// Here, only the execution of the functions is tested, rather than
// the verification of the eigendecomposition through theoretical relations.
{
const EigenMatrix<Type> EM(A);
const DiagonalMatrix<Type> EValsRe = EM.EValsRe();
const DiagonalMatrix<Type>& EValsIm = EM.EValsIm();
const SquareMatrix<Type>& EVecs = EM.EVecs();
cmp
(
" Return real eigenvalues or real part of complex eigenvalues = ",
EValsRe,
List<Type>
({
Type(16.116844),
Type(-1.116844),
Type(0)
}),
getTol(Type(0)),
1e-6
);
cmp
(
" Return zero-matrix for real eigenvalues "
"or imaginary part of complex eigenvalues = ",
EValsIm,
List<Type>(3, Zero)
);
Info<< " Return eigenvectors matrix = " << EVecs << endl;
}
}
// Test the relation: "sum(eigenvalues) = trace(A)"
// w.wiki/4zs (Retrieved: 16-06-19) # Item-1
template<class Type>
void test_eigenvalues_sum
(
const SquareMatrix<Type>& A,
const DiagonalMatrix<Type>& EValsRe
)
{
const Type trace = A.trace();
// Imaginary part of complex conjugates cancel each other
const Type EValsSum = sum(EValsRe);
Info<< " # A.mRows = " << A.m() << nl;
cmp
(
" # sum(eigenvalues) = trace(A) = ",
EValsSum,
trace,
getTol(Type(0))
);
}
// Test the relation: "prod(eigenvalues) = det(A)"
// w.wiki/4zs (Retrieved: 16-06-19) # Item-2
// Note that the determinant computation may fail
// which is not a suggestion that eigendecomposition fails
template<class Type>
void test_eigenvalues_prod
(
const SquareMatrix<Type>& A,
const DiagonalMatrix<Type>& EValsRe,
const DiagonalMatrix<Type>& EValsIm
)
{
const Type determinant = mag(det(A));
Type EValsProd = Type(1);
if (EValsIm.empty())
{
for (label i = 0; i < EValsRe.size(); ++i)
{
EValsProd *= Foam::sqrt(sqr(EValsRe[i]));
}
}
else
{
for (label i = 0; i < EValsRe.size(); ++i)
{
EValsProd *= Foam::sqrt(sqr(EValsRe[i]) + sqr(EValsIm[i]));
}
}
cmp
(
" # prod(eigenvalues) = det(A) = ",
EValsProd,
determinant,
getTol(Type(0))
);
}
// Test eigenvalues in eigendecomposition relations
// Relations: (Beauregard & Fraleigh (1973), ISBN 0-395-14017-X, p. 307)
template<class Type>
void test_eigenvalues(Type)
{
Random rndGen(1234);
const label numberOfTests = 20;
// Non-symmetric
for (label i = 0; i < numberOfTests; ++i)
{
const label mRows = rndGen.position(100, 200);
const labelPair m(mRows, mRows);
const SquareMatrix<Type> A
(
makeRandomMatrix<SquareMatrix<Type>>(m, rndGen)
);
const EigenMatrix<Type> EM(A);
const DiagonalMatrix<Type>& EValsRe = EM.EValsRe();
test_eigenvalues_sum(A, EValsRe);
// LUDecompose does not work with floatScalar at the time of writing,
// hence det function. Once LUDecompose is refactored, comment out below
// const DiagonalMatrix<Type>& EValsIm = EM.EValsIm();
// test_eigenvalues_prod(A, EValsRe, EValsIm);
}
// Symmetric
for (label i = 0; i < numberOfTests; ++i)
{
const label mRows = rndGen.position(100, 200);
const labelPair m(mRows, mRows);
SquareMatrix<Type> A
(
makeRandomMatrix<SquareMatrix<Type>>(m, rndGen)
);
// Symmetrise with noise
for (label n = 0; n < A.n() - 1; ++n)
{
for (label m = A.m() - 1; m > n; --m)
{
A(n, m) = A(m, n) + SMALL;
}
}
const bool symmetric = true;
const EigenMatrix<Type> EM(A, symmetric);
const DiagonalMatrix<Type>& EValsRe = EM.EValsRe();
test_eigenvalues_sum(A, EValsRe);
}
}
// Test the relation: "(A & EVec - EVal*EVec) = 0"
template<class Type>
void test_characteristic_eq
(
const SquareMatrix<Type>& Aorig,
const DiagonalMatrix<Type>& EValsRe,
const DiagonalMatrix<Type>& EValsIm,
const SquareMatrix<complex>& EVecs
)
{
SquareMatrix<complex> A(Aorig.m());
auto convertToComplex = [&](const scalar& val) { return complex(val); };
std::transform
(
Aorig.cbegin(),
Aorig.cend(),
A.begin(),
convertToComplex
);
for (label i = 0; i < A.m(); ++i)
{
const RectangularMatrix<complex>& EVec(EVecs.subColumn(i));
const complex EVal(EValsRe[i], EValsIm[i]);
const RectangularMatrix<complex> leftSide(A*EVec);
const RectangularMatrix<complex> rightSide(EVal*EVec);
cmp
(
" # (A & EVec - EVal*EVec) = 0:",
flt(leftSide),
flt(rightSide),
getTol(Type(0))
);
}
}
// Test eigenvectors in eigendecomposition relations
template<class Type>
void test_eigenvectors(Type)
{
Random rndGen(1234);
const label numberOfTests = 20;
// Non-symmetric
for (label i = 0; i < numberOfTests; ++i)
{
const label mRows = rndGen.position(100, 200);
const labelPair m(mRows, mRows);
const SquareMatrix<Type> A
(
makeRandomMatrix<SquareMatrix<Type>>(m, rndGen)
);
const EigenMatrix<Type> EM(A);
const DiagonalMatrix<Type>& EValsRe = EM.EValsRe();
const DiagonalMatrix<Type>& EValsIm = EM.EValsIm();
const SquareMatrix<complex> EVecs(EM.complexEVecs());
test_characteristic_eq(A, EValsRe, EValsIm, EVecs);
}
// Symmetric
for (label i = 0; i < numberOfTests; ++i)
{
const label mRows = rndGen.position(100, 200);
const labelPair m(mRows, mRows);
SquareMatrix<Type> A
(
makeRandomMatrix<SquareMatrix<Type>>(m, rndGen)
);
// Symmetrise with noise
for (label n = 0; n < A.n() - 1; ++n)
{
for (label m = A.m() - 1; m > n; --m)
{
A(n, m) = A(m, n) + SMALL;
}
}
const bool symmetric = true;
const EigenMatrix<Type> EM(A, symmetric);
const DiagonalMatrix<Type>& EValsRe = EM.EValsRe();
const DiagonalMatrix<Type>& EValsIm = EM.EValsIm();
const SquareMatrix<complex> EVecs(EM.complexEVecs());
test_characteristic_eq(A, EValsRe, EValsIm, EVecs);
}
}
// Do compile-time recursion over the given types
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){}
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID)
{
Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl;
test_constructors(std::get<I>(types));
Info<< nl << " ## Test member functions: "<< typeID[I] <<" ##" << nl;
test_member_funcs(std::get<I>(types));
Info<< nl << " ## Test eigenvalues: "<< typeID[I] <<" ##" << nl;
test_eigenvalues(std::get<I>(types));
Info<< nl << " ## Test eigenvectors: "<< typeID[I] <<" ##" << nl;
test_eigenvectors(std::get<I>(types));
run_tests<I + 1, Tp...>(types, typeID);
}
// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * //
int main()
{
Info<< setprecision(15);
const std::tuple<floatScalar, doubleScalar> types
(
std::make_tuple(Zero, Zero)
);
const List<word> typeID
({
"SquareMatrix<floatScalar>",
"SquareMatrix<doubleScalar>"
});
run_tests(types, typeID);
Info<< nl << " ## Test corner cases ##" << endl;
{
Info<< nl << " ## Rosser et al. (1951) matrix: ##" << nl;
// Rosser, J. B., Lanczos, C., Hestenes, M. R., & Karush, W. (1951).
// Separation of close eigenvalues of a real symmetric matrix.
// Jour. Research of the National Bureau of Standards, 47(4), 291-297.
// DOI:10.6028/jres.047.037
//
// 8x8 symmetric square matrix consisting of close real eigenvalues
// ibid, p. 294
// {
// 1020.04901843, 1020.000, 1019.90195136, 1000.000,
// 1000.000, 0.09804864072, 0.000, -1020.0490
// }
// Note that prod(eigenvalues) != determinant(A) for this matrix
// via the LAPACK routine z/dgetrf
SquareMatrix<doubleScalar> A(8, Zero);
assignMatrix
(
A,
{
611, 196, -192, 407, -8, -52, -49, 29,
196, 899, 113, -192, -71, -43, -8, -44,
-192, 113, 899, 196, 61, 49, 8, 52,
407, -192, 196, 611, 8, 44, 59, -23,
-8, -71, 61, 8, 411, -599, 208, 208,
-52, -43, 49, 44, -599, 411, 208, 208,
-49, -8, 8, 59, 208, 208, 99, -911,
29, -44, 52, -23, 208, 208, -911, 99
}
);
const EigenMatrix<doubleScalar> EM(A);
const DiagonalMatrix<doubleScalar>& EValsRe = EM.EValsRe();
const DiagonalMatrix<doubleScalar>& EValsIm = EM.EValsIm();
test_eigenvalues_sum(A, EValsRe);
cmp
(
" # Rosser et al. (1951) case, EValsRe = ",
EValsRe,
List<doubleScalar> // theoretical EValsRe
({
-1020.0490, 0.000, 0.09804864072, 1000.000,
1000.000, 1019.90195136, 1020.000, 1020.04901843
}),
1e-3
);
cmp
(
" # Rosser et al. (1951) case, EValsIm = ",
EValsIm,
List<doubleScalar>(8, Zero)
);
}
{
Info<< nl << " ## Test eigenvector unpacking: ##" << nl;
SquareMatrix<doubleScalar> A(3, Zero);
assignMatrix
(
A,
{
1, 2, 3,
-4, -5, 6,
7, -8, 9
}
);
const EigenMatrix<doubleScalar> EM(A);
const SquareMatrix<complex> complexEVecs(EM.complexEVecs());
SquareMatrix<complex> B(3, Zero);
assignMatrix
(
B,
{
complex(-0.373220280),
complex(0.417439996, 0.642691344),
complex(0.417439996, -0.642691344),
complex(-0.263919251),
complex(-1.165275867, 0.685068715),
complex(-1.165275867, -0.685068715),
complex(-0.889411744),
complex(-0.89990601, -0.3672785281),
complex(-0.89990601, 0.3672785281),
}
);
cmp
(
" # ",
flt(complexEVecs),
flt(B)
);
}
{
Info<< nl << " ## Test matrices with small values: ##" << nl;
const List<doubleScalar> epsilons
({
0, SMALL, Foam::sqrt(SMALL), sqr(SMALL), Foam::cbrt(SMALL),
-SMALL, -Foam::sqrt(SMALL), -sqr(SMALL), -Foam::cbrt(SMALL)
});
Random rndGen(1234);
const label numberOfTests = 20;
for (label i = 0; i < numberOfTests; ++i)
{
const label mRows = rndGen.position(100, 200);
for (const auto& eps : epsilons)
{
const SquareMatrix<doubleScalar> A(mRows, eps);
const EigenMatrix<doubleScalar> EM(A);
const DiagonalMatrix<doubleScalar>& EValsRe = EM.EValsRe();
const DiagonalMatrix<doubleScalar>& EValsIm = EM.EValsIm();
const SquareMatrix<complex> EVecs(EM.complexEVecs());
test_eigenvalues_sum(A, EValsRe);
test_characteristic_eq(A, EValsRe, EValsIm, EVecs);
}
}
}
{
Info<< nl << " ## Test matrices with repeating eigenvalues: ##" << nl;
SquareMatrix<doubleScalar> A(3, Zero);
assignMatrix
(
A,
{
0, 1, 1,
1, 0, 1,
1, 1, 0
}
);
const EigenMatrix<doubleScalar> EM(A);
const DiagonalMatrix<doubleScalar>& EValsRe = EM.EValsRe();
const DiagonalMatrix<doubleScalar>& EValsIm = EM.EValsIm();
const SquareMatrix<complex> EVecs(EM.complexEVecs());
test_eigenvalues_sum(A, EValsRe);
test_characteristic_eq(A, EValsRe, EValsIm, EVecs);
}
if (nFail_)
{
Info<< nl << " #### "
<< "Failed in " << nFail_ << " tests "
<< "out of total " << nTest_ << " tests "
<< "####\n" << endl;
return 1;
}
Info<< nl << " #### Passed all " << nTest_ <<" tests ####\n" << endl;
return 0;
}