openfoam/applications/utilities/mesh/advanced/PDRMesh/PDRMesh.C
Mark Olesen 345a2a42f1 ENH: simplify method names for reading argList options and arguments
- use succincter method names that more closely resemble dictionary
  and HashTable method names. This improves method name consistency
  between classes and also requires less typing effort:

    args.found(optName)        vs.  args.optionFound(optName)
    args.readIfPresent(..)     vs.  args.optionReadIfPresent(..)
    ...
    args.opt<scalar>(optName)  vs.  args.optionRead<scalar>(optName)
    args.read<scalar>(index)   vs.  args.argRead<scalar>(index)

- the older method names forms have been retained for code compatibility,
  but are now deprecated
2018-01-08 15:35:18 +01:00

1285 lines
36 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
PDRMesh
Group
grpMeshAdvancedUtilities
Description
Mesh and field preparation utility for PDR type simulations.
Reads
- cellSet giving blockedCells
- faceSets giving blockedFaces and the patch they should go into
NOTE: To avoid exposing wrong fields values faceSets should include
faces contained in the blockedCells cellset.
- coupledFaces reads coupledFacesSet to introduces mixed-coupled
duplicate baffles
Subsets out the blocked cells and splits the blockedFaces and updates
fields.
The face splitting is done by duplicating the faces. No duplication of
points for now (so checkMesh will show a lot of 'duplicate face' messages)
\*---------------------------------------------------------------------------*/
#include "fvMeshSubset.H"
#include "argList.H"
#include "cellSet.H"
#include "IOobjectList.H"
#include "volFields.H"
#include "mapPolyMesh.H"
#include "faceSet.H"
#include "cellSet.H"
#include "pointSet.H"
#include "syncTools.H"
#include "ReadFields.H"
#include "polyTopoChange.H"
#include "polyModifyFace.H"
#include "polyAddFace.H"
#include "regionSplit.H"
#include "Tuple2.H"
#include "cyclicFvPatch.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void modifyOrAddFace
(
polyTopoChange& meshMod,
const face& f,
const label facei,
const label own,
const bool flipFaceFlux,
const label newPatchi,
const label zoneID,
const bool zoneFlip,
PackedBoolList& modifiedFace
)
{
if (!modifiedFace[facei])
{
// First usage of face. Modify.
meshMod.setAction
(
polyModifyFace
(
f, // modified face
facei, // label of face
own, // owner
-1, // neighbour
flipFaceFlux, // face flip
newPatchi, // patch for face
false, // remove from zone
zoneID, // zone for face
zoneFlip // face flip in zone
)
);
modifiedFace[facei] = 1;
}
else
{
// Second or more usage of face. Add.
meshMod.setAction
(
polyAddFace
(
f, // modified face
own, // owner
-1, // neighbour
-1, // master point
-1, // master edge
facei, // master face
flipFaceFlux, // face flip
newPatchi, // patch for face
zoneID, // zone for face
zoneFlip // face flip in zone
)
);
}
}
template<class Type>
void subsetVolFields
(
const fvMeshSubset& subsetter,
const IOobjectList& objectsList,
const label patchi,
const Type& exposedValue,
const word GeomVolType,
PtrList<GeometricField<Type, fvPatchField, volMesh>>& subFields
)
{
const fvMesh& baseMesh = subsetter.baseMesh();
label i = 0;
forAllConstIter(IOobjectList , objectsList, iter)
{
if (iter()->headerClassName() == GeomVolType)
{
const word fieldName = iter()->name();
Info<< "Subsetting field " << fieldName << endl;
GeometricField<Type, fvPatchField, volMesh> volField
(
*iter(),
baseMesh
);
subFields.set(i, subsetter.interpolate(volField));
// Explicitly set exposed faces (in patchi) to exposedValue.
if (patchi >= 0)
{
fvPatchField<Type>& fld =
subFields[i++].boundaryFieldRef()[patchi];
label newStart = fld.patch().patch().start();
label oldPatchi = subsetter.patchMap()[patchi];
if (oldPatchi == -1)
{
// New patch. Reset whole value.
fld = exposedValue;
}
else
{
// Reset those faces that originate from different patch
// or internal faces.
label oldSize = volField.boundaryField()[oldPatchi].size();
label oldStart = volField.boundaryField()
[
oldPatchi
].patch().patch().start();
forAll(fld, j)
{
label oldFacei = subsetter.faceMap()[newStart+j];
if (oldFacei < oldStart || oldFacei >= oldStart+oldSize)
{
fld[j] = exposedValue;
}
}
}
}
}
}
}
template<class Type>
void subsetSurfaceFields
(
const fvMeshSubset& subsetter,
const IOobjectList& objectsList,
const label patchi,
const Type& exposedValue,
const word GeomSurfType,
PtrList<GeometricField<Type, fvsPatchField, surfaceMesh>>& subFields
)
{
const fvMesh& baseMesh = subsetter.baseMesh();
label i(0);
forAllConstIter(IOobjectList , objectsList, iter)
{
if (iter()->headerClassName() == GeomSurfType)
{
const word& fieldName = iter.key();
Info<< "Subsetting field " << fieldName << endl;
GeometricField<Type, fvsPatchField, surfaceMesh> volField
(
*iter(),
baseMesh
);
subFields.set(i, subsetter.interpolate(volField));
// Explicitly set exposed faces (in patchi) to exposedValue.
if (patchi >= 0)
{
fvsPatchField<Type>& fld =
subFields[i++].boundaryFieldRef()[patchi];
label newStart = fld.patch().patch().start();
label oldPatchi = subsetter.patchMap()[patchi];
if (oldPatchi == -1)
{
// New patch. Reset whole value.
fld = exposedValue;
}
else
{
// Reset those faces that originate from different patch
// or internal faces.
label oldSize = volField.boundaryField()[oldPatchi].size();
label oldStart = volField.boundaryField()
[
oldPatchi
].patch().patch().start();
forAll(fld, j)
{
label oldFacei = subsetter.faceMap()[newStart+j];
if (oldFacei < oldStart || oldFacei >= oldStart+oldSize)
{
fld[j] = exposedValue;
}
}
}
}
}
}
}
// Faces introduced into zero-sized patches don't get a value at all.
// This is hack to set them to an initial value.
template<class GeoField>
void initCreatedPatches
(
const fvMesh& mesh,
const mapPolyMesh& map,
const typename GeoField::value_type initValue
)
{
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::
iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
GeoField& field = const_cast<GeoField&>(*fieldIter());
typename GeoField::Boundary& fieldBf =
field.boundaryFieldRef();
forAll(fieldBf, patchi)
{
if (map.oldPatchSizes()[patchi] == 0)
{
// Not mapped.
fieldBf[patchi] = initValue;
if (fieldBf[patchi].fixesValue())
{
fieldBf[patchi] == initValue;
}
}
}
}
}
template<class TopoSet>
void subsetTopoSets
(
const fvMesh& mesh,
const IOobjectList& objectsList,
const labelList& map,
const fvMesh& subMesh,
PtrList<TopoSet>& subSets
)
{
// Read original sets
PtrList<TopoSet> sets;
ReadFields<TopoSet>(objectsList, sets);
subSets.setSize(sets.size());
forAll(sets, i)
{
TopoSet& set = sets[i];
Info<< "Subsetting " << set.type() << " " << set.name() << endl;
// Map the data
PackedBoolList isSet(set.maxSize(mesh));
forAllConstIter(labelHashSet, set, iter)
{
isSet[iter.key()] = true;
}
label nSet = 0;
forAll(map, i)
{
if (isSet[map[i]])
{
nSet++;
}
}
subSets.set
(
i,
new TopoSet(subMesh, set.name(), nSet, IOobject::AUTO_WRITE)
);
TopoSet& subSet = subSets[i];
forAll(map, i)
{
if (isSet[map[i]])
{
subSet.insert(i);
}
}
}
}
void createCoupledBaffles
(
fvMesh& mesh,
const labelList& coupledWantedPatch,
polyTopoChange& meshMod,
PackedBoolList& modifiedFace
)
{
const faceZoneMesh& faceZones = mesh.faceZones();
forAll(coupledWantedPatch, facei)
{
if (coupledWantedPatch[facei] != -1)
{
const face& f = mesh.faces()[facei];
label zoneID = faceZones.whichZone(facei);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = faceZones[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(facei)];
}
// Use owner side of face
modifyOrAddFace
(
meshMod,
f, // modified face
facei, // label of face
mesh.faceOwner()[facei], // owner
false, // face flip
coupledWantedPatch[facei], // patch for face
zoneID, // zone for face
zoneFlip, // face flip in zone
modifiedFace // modify or add status
);
if (mesh.isInternalFace(facei))
{
label zoneID = faceZones.whichZone(facei);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = faceZones[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(facei)];
}
// Use neighbour side of face
modifyOrAddFace
(
meshMod,
f.reverseFace(), // modified face
facei, // label of face
mesh.faceNeighbour()[facei],// owner
false, // face flip
coupledWantedPatch[facei], // patch for face
zoneID, // zone for face
zoneFlip, // face flip in zone
modifiedFace // modify or add status
);
}
}
}
}
void createCyclicCoupledBaffles
(
fvMesh& mesh,
const labelList& cyclicMasterPatch,
const labelList& cyclicSlavePatch,
polyTopoChange& meshMod,
PackedBoolList& modifiedFace
)
{
const faceZoneMesh& faceZones = mesh.faceZones();
forAll(cyclicMasterPatch, facei)
{
if (cyclicMasterPatch[facei] != -1)
{
const face& f = mesh.faces()[facei];
label zoneID = faceZones.whichZone(facei);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = faceZones[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(facei)];
}
modifyOrAddFace
(
meshMod,
f.reverseFace(), // modified face
facei, // label of face
mesh.faceNeighbour()[facei], // owner
false, // face flip
cyclicMasterPatch[facei], // patch for face
zoneID, // zone for face
zoneFlip, // face flip in zone
modifiedFace // modify or add
);
}
}
forAll(cyclicSlavePatch, facei)
{
if (cyclicSlavePatch[facei] != -1)
{
const face& f = mesh.faces()[facei];
if (mesh.isInternalFace(facei))
{
label zoneID = faceZones.whichZone(facei);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = faceZones[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(facei)];
}
// Use owner side of face
modifyOrAddFace
(
meshMod,
f, // modified face
facei, // label of face
mesh.faceOwner()[facei], // owner
false, // face flip
cyclicSlavePatch[facei], // patch for face
zoneID, // zone for face
zoneFlip, // face flip in zone
modifiedFace // modify or add status
);
}
}
}
}
void createBaffles
(
fvMesh& mesh,
const labelList& wantedPatch,
polyTopoChange& meshMod
)
{
const faceZoneMesh& faceZones = mesh.faceZones();
Info << "faceZone:createBaffle " << faceZones << endl;
forAll(wantedPatch, facei)
{
if (wantedPatch[facei] != -1)
{
const face& f = mesh.faces()[facei];
label zoneID = faceZones.whichZone(facei);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = faceZones[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(facei)];
}
meshMod.setAction
(
polyModifyFace
(
f, // modified face
facei, // label of face
mesh.faceOwner()[facei], // owner
-1, // neighbour
false, // face flip
wantedPatch[facei], // patch for face
false, // remove from zone
zoneID, // zone for face
zoneFlip // face flip in zone
)
);
if (mesh.isInternalFace(facei))
{
label zoneID = faceZones.whichZone(facei);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = faceZones[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(facei)];
}
meshMod.setAction
(
polyAddFace
(
f.reverseFace(), // modified face
mesh.faceNeighbour()[facei],// owner
-1, // neighbour
-1, // masterPointID
-1, // masterEdgeID
facei, // masterFaceID,
false, // face flip
wantedPatch[facei], // patch for face
zoneID, // zone for face
zoneFlip // face flip in zone
)
);
}
}
}
}
// Wrapper around find patch. Also makes sure same patch in parallel.
label findPatch(const polyBoundaryMesh& patches, const word& patchName)
{
label patchi = patches.findPatchID(patchName);
if (patchi == -1)
{
FatalErrorInFunction
<< "Illegal patch " << patchName
<< nl << "Valid patches are " << patches.names()
<< exit(FatalError);
}
// Check same patch for all procs
{
label newPatch = patchi;
reduce(newPatch, minOp<label>());
if (newPatch != patchi)
{
FatalErrorInFunction
<< "Patch " << patchName
<< " should have the same patch index on all processors." << nl
<< "On my processor it has index " << patchi
<< " ; on some other processor it has index " << newPatch
<< exit(FatalError);
}
}
return patchi;
}
int main(int argc, char *argv[])
{
#include "addOverwriteOption.H"
#include "setRootCase.H"
#include "createTime.H"
runTime.functionObjects().off();
#include "createMesh.H"
// Read control dictionary
// ~~~~~~~~~~~~~~~~~~~~~~~
IOdictionary dict
(
IOobject
(
"PDRMeshDict",
runTime.system(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
// Per faceSet the patch to put the baffles into
const List<Pair<word>> setsAndPatches(dict.lookup("blockedFaces"));
// Per faceSet the patch to put the coupled baffles into
DynamicList<FixedList<word, 3>> coupledAndPatches(10);
const dictionary& functionDicts = dict.subDict("coupledFaces");
forAllConstIter(dictionary, functionDicts, iter)
{
// safety:
if (!iter().isDict())
{
continue;
}
const word& key = iter().keyword();
const dictionary& dict = iter().dict();
const word cyclicName = dict.lookup("cyclicMasterPatch");
const word wallName = dict.lookup("wallPatch");
FixedList<word, 3> nameAndType;
nameAndType[0] = key;
nameAndType[1] = wallName;
nameAndType[2] = cyclicName;
coupledAndPatches.append(nameAndType);
}
forAll(setsAndPatches, setI)
{
Info<< "Faces in faceSet " << setsAndPatches[setI][0]
<< " become baffles in patch " << setsAndPatches[setI][1]
<< endl;
}
forAll(coupledAndPatches, setI)
{
Info<< "Faces in faceSet " << coupledAndPatches[setI][0]
<< " become coupled baffles in patch " << coupledAndPatches[setI][1]
<< endl;
}
// All exposed faces that are not explicitly marked to be put into a patch
const word defaultPatch(dict.lookup("defaultPatch"));
Info<< "Faces that get exposed become boundary faces in patch "
<< defaultPatch << endl;
const word blockedSetName(dict.lookup("blockedCells"));
Info<< "Reading blocked cells from cellSet " << blockedSetName
<< endl;
const bool overwrite = args.found("overwrite");
// Read faceSets, lookup patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Check that face sets don't have coincident faces
labelList wantedPatch(mesh.nFaces(), -1);
forAll(setsAndPatches, setI)
{
faceSet fSet(mesh, setsAndPatches[setI][0]);
label patchi = findPatch
(
mesh.boundaryMesh(),
setsAndPatches[setI][1]
);
forAllConstIter(faceSet, fSet, iter)
{
if (wantedPatch[iter.key()] != -1)
{
FatalErrorInFunction
<< "Face " << iter.key()
<< " is in faceSet " << setsAndPatches[setI][0]
<< " destined for patch " << setsAndPatches[setI][1]
<< " but also in patch " << wantedPatch[iter.key()]
<< exit(FatalError);
}
wantedPatch[iter.key()] = patchi;
}
}
// Per face the patch for coupled baffle or -1.
labelList coupledWantedPatch(mesh.nFaces(), -1);
labelList cyclicWantedPatch_half0(mesh.nFaces(), -1);
labelList cyclicWantedPatch_half1(mesh.nFaces(), -1);
forAll(coupledAndPatches, setI)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
const label cyclicId =
findPatch(patches, coupledAndPatches[setI][2]);
const label cyclicSlaveId = findPatch
(
patches,
refCast<const cyclicFvPatch>
(
mesh.boundary()[cyclicId]
).neighbFvPatch().name()
);
faceSet fSet(mesh, coupledAndPatches[setI][0]);
label patchi = findPatch(patches, coupledAndPatches[setI][1]);
forAllConstIter(faceSet, fSet, iter)
{
if (coupledWantedPatch[iter.key()] != -1)
{
FatalErrorInFunction
<< "Face " << iter.key()
<< " is in faceSet " << coupledAndPatches[setI][0]
<< " destined for patch " << coupledAndPatches[setI][1]
<< " but also in patch " << coupledWantedPatch[iter.key()]
<< exit(FatalError);
}
coupledWantedPatch[iter.key()] = patchi;
cyclicWantedPatch_half0[iter.key()] = cyclicId;
cyclicWantedPatch_half1[iter.key()] = cyclicSlaveId;
}
}
// Exposed faces patch
label defaultPatchi = findPatch(mesh.boundaryMesh(), defaultPatch);
//
// Removing blockedCells (like subsetMesh)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Create mesh subsetting engine
fvMeshSubset subsetter(mesh);
{
cellSet blockedCells(mesh, blockedSetName);
// invert
blockedCells.invert(mesh.nCells());
// Create subsetted mesh.
subsetter.setLargeCellSubset(blockedCells, defaultPatchi, true);
}
// Subset wantedPatch. Note that might also include boundary faces
// that have been exposed by subsetting.
wantedPatch = IndirectList<label>(wantedPatch, subsetter.faceMap())();
coupledWantedPatch = IndirectList<label>
(
coupledWantedPatch,
subsetter.faceMap()
)();
cyclicWantedPatch_half0 = IndirectList<label>
(
cyclicWantedPatch_half0,
subsetter.faceMap()
)();
cyclicWantedPatch_half1 = IndirectList<label>
(
cyclicWantedPatch_half1,
subsetter.faceMap()
)();
// Read all fields in time and constant directories
IOobjectList objects(mesh, runTime.timeName());
IOobjectList timeObjects(IOobjectList(mesh, mesh.facesInstance()));
forAllConstIter(IOobjectList, timeObjects, iter)
{
if
(
iter()->headerClassName() == volScalarField::typeName
|| iter()->headerClassName() == volVectorField::typeName
|| iter()->headerClassName() == volSphericalTensorField::typeName
|| iter()->headerClassName() == volTensorField::typeName
|| iter()->headerClassName() == volSymmTensorField::typeName
|| iter()->headerClassName() == surfaceScalarField::typeName
|| iter()->headerClassName() == surfaceVectorField::typeName
|| iter()->headerClassName()
== surfaceSphericalTensorField::typeName
|| iter()->headerClassName() == surfaceSymmTensorField::typeName
|| iter()->headerClassName() == surfaceTensorField::typeName
)
{
objects.add(*iter());
}
}
// Read vol fields and subset.
wordList scalarNames(objects.names(volScalarField::typeName));
PtrList<volScalarField> scalarFlds(scalarNames.size());
subsetVolFields
(
subsetter,
objects,
defaultPatchi,
scalar(Zero),
volScalarField::typeName,
scalarFlds
);
wordList vectorNames(objects.names(volVectorField::typeName));
PtrList<volVectorField> vectorFlds(vectorNames.size());
subsetVolFields
(
subsetter,
objects,
defaultPatchi,
vector(Zero),
volVectorField::typeName,
vectorFlds
);
wordList sphericalTensorNames
(
objects.names(volSphericalTensorField::typeName)
);
PtrList<volSphericalTensorField> sphericalTensorFlds
(
sphericalTensorNames.size()
);
subsetVolFields
(
subsetter,
objects,
defaultPatchi,
sphericalTensor(Zero),
volSphericalTensorField::typeName,
sphericalTensorFlds
);
wordList symmTensorNames(objects.names(volSymmTensorField::typeName));
PtrList<volSymmTensorField> symmTensorFlds(symmTensorNames.size());
subsetVolFields
(
subsetter,
objects,
defaultPatchi,
symmTensor(Zero),
volSymmTensorField::typeName,
symmTensorFlds
);
wordList tensorNames(objects.names(volTensorField::typeName));
PtrList<volTensorField> tensorFlds(tensorNames.size());
subsetVolFields
(
subsetter,
objects,
defaultPatchi,
tensor(Zero),
volTensorField::typeName,
tensorFlds
);
// Read surface fields and subset.
wordList surfScalarNames(objects.names(surfaceScalarField::typeName));
PtrList<surfaceScalarField> surfScalarFlds(surfScalarNames.size());
subsetSurfaceFields
(
subsetter,
objects,
defaultPatchi,
scalar(Zero),
surfaceScalarField::typeName,
surfScalarFlds
);
wordList surfVectorNames(objects.names(surfaceVectorField::typeName));
PtrList<surfaceVectorField> surfVectorFlds(surfVectorNames.size());
subsetSurfaceFields
(
subsetter,
objects,
defaultPatchi,
vector(Zero),
surfaceVectorField::typeName,
surfVectorFlds
);
wordList surfSphericalTensorNames
(
objects.names(surfaceSphericalTensorField::typeName)
);
PtrList<surfaceSphericalTensorField> surfSphericalTensorFlds
(
surfSphericalTensorNames.size()
);
subsetSurfaceFields
(
subsetter,
objects,
defaultPatchi,
sphericalTensor(Zero),
surfaceSphericalTensorField::typeName,
surfSphericalTensorFlds
);
wordList surfSymmTensorNames
(
objects.names(surfaceSymmTensorField::typeName)
);
PtrList<surfaceSymmTensorField> surfSymmTensorFlds
(
surfSymmTensorNames.size()
);
subsetSurfaceFields
(
subsetter,
objects,
defaultPatchi,
symmTensor(Zero),
surfaceSymmTensorField::typeName,
surfSymmTensorFlds
);
wordList surfTensorNames(objects.names(surfaceTensorField::typeName));
PtrList<surfaceTensorField> surfTensorFlds(surfTensorNames.size());
subsetSurfaceFields
(
subsetter,
objects,
defaultPatchi,
tensor(Zero),
surfaceTensorField::typeName,
surfTensorFlds
);
// Set handling
PtrList<cellSet> cellSets;
PtrList<faceSet> faceSets;
PtrList<pointSet> pointSets;
{
IOobjectList objects(mesh, mesh.facesInstance(), "polyMesh/sets");
subsetTopoSets
(
mesh,
objects,
subsetter.cellMap(),
subsetter.subMesh(),
cellSets
);
subsetTopoSets
(
mesh,
objects,
subsetter.faceMap(),
subsetter.subMesh(),
faceSets
);
subsetTopoSets
(
mesh,
objects,
subsetter.pointMap(),
subsetter.subMesh(),
pointSets
);
}
if (!overwrite)
{
runTime++;
}
Info<< "Writing mesh without blockedCells to time " << runTime.value()
<< endl;
// Subsetting adds 'subset' prefix. Rename field to be like original.
forAll(scalarFlds, i)
{
scalarFlds[i].rename(scalarNames[i]);
scalarFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(vectorFlds, i)
{
vectorFlds[i].rename(vectorNames[i]);
vectorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(sphericalTensorFlds, i)
{
sphericalTensorFlds[i].rename(sphericalTensorNames[i]);
sphericalTensorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(symmTensorFlds, i)
{
symmTensorFlds[i].rename(symmTensorNames[i]);
symmTensorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(tensorFlds, i)
{
tensorFlds[i].rename(tensorNames[i]);
tensorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
// Surface ones.
forAll(surfScalarFlds, i)
{
surfScalarFlds[i].rename(surfScalarNames[i]);
surfScalarFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(surfVectorFlds, i)
{
surfVectorFlds[i].rename(surfVectorNames[i]);
surfVectorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(surfSphericalTensorFlds, i)
{
surfSphericalTensorFlds[i].rename(surfSphericalTensorNames[i]);
surfSphericalTensorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(surfSymmTensorFlds, i)
{
surfSymmTensorFlds[i].rename(surfSymmTensorNames[i]);
surfSymmTensorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
forAll(surfTensorNames, i)
{
surfTensorFlds[i].rename(surfTensorNames[i]);
surfTensorFlds[i].writeOpt() = IOobject::AUTO_WRITE;
}
subsetter.subMesh().write();
//
// Splitting blockedFaces
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Synchronize wantedPatch across coupled patches.
syncTools::syncFaceList
(
subsetter.subMesh(),
wantedPatch,
maxEqOp<label>()
);
// Synchronize coupledWantedPatch across coupled patches.
syncTools::syncFaceList
(
subsetter.subMesh(),
coupledWantedPatch,
maxEqOp<label>()
);
// Synchronize cyclicWantedPatch across coupled patches.
syncTools::syncFaceList
(
subsetter.subMesh(),
cyclicWantedPatch_half0,
maxEqOp<label>()
);
// Synchronize cyclicWantedPatch across coupled patches.
syncTools::syncFaceList
(
subsetter.subMesh(),
cyclicWantedPatch_half1,
maxEqOp<label>()
);
// Topochange container
polyTopoChange meshMod(subsetter.subMesh());
// Whether first use of face (modify) or consecutive (add)
PackedBoolList modifiedFace(mesh.nFaces());
// Create coupled wall-side baffles
createCoupledBaffles
(
subsetter.subMesh(),
coupledWantedPatch,
meshMod,
modifiedFace
);
// Create coupled master/slave cyclic baffles
createCyclicCoupledBaffles
(
subsetter.subMesh(),
cyclicWantedPatch_half0,
cyclicWantedPatch_half1,
meshMod,
modifiedFace
);
// Create wall baffles
createBaffles
(
subsetter.subMesh(),
wantedPatch,
meshMod
);
if (!overwrite)
{
runTime++;
}
// Change the mesh. Change points directly (no inflation).
autoPtr<mapPolyMesh> map = meshMod.changeMesh(subsetter.subMesh(), false);
// Update fields
subsetter.subMesh().updateMesh(map);
// Fix faces that get mapped to zero-sized patches (these don't get any
// value)
initCreatedPatches<volScalarField>
(
subsetter.subMesh(),
map,
0.0
);
initCreatedPatches<volVectorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<volSphericalTensorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<volSymmTensorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<volTensorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<surfaceScalarField>
(
subsetter.subMesh(),
map,
0.0
);
initCreatedPatches<surfaceVectorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<surfaceSphericalTensorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<surfaceSymmTensorField>
(
subsetter.subMesh(),
map,
Zero
);
initCreatedPatches<surfaceTensorField>
(
subsetter.subMesh(),
map,
Zero
);
// Update numbering of topoSets
topoSet::updateMesh(subsetter.subMesh().facesInstance(), map, cellSets);
topoSet::updateMesh(subsetter.subMesh().facesInstance(), map, faceSets);
topoSet::updateMesh(subsetter.subMesh().facesInstance(), map, pointSets);
// Move mesh (since morphing might not do this)
if (map().hasMotionPoints())
{
subsetter.subMesh().movePoints(map().preMotionPoints());
}
Info<< "Writing mesh with split blockedFaces to time " << runTime.value()
<< endl;
subsetter.subMesh().write();
//
// Removing inaccessible regions
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Determine connected regions. regionSplit is the labelList with the
// region per cell.
regionSplit cellRegion(subsetter.subMesh());
if (cellRegion.nRegions() > 1)
{
WarningInFunction
<< "Removing blocked faces and cells created "
<< cellRegion.nRegions()
<< " regions that are not connected via a face." << nl
<< " This is not supported in solvers." << nl
<< " Use" << nl << nl
<< " splitMeshRegions <root> <case> -largestOnly" << nl << nl
<< " to extract a single region of the mesh." << nl
<< " This mesh will be written to a new timedirectory"
<< " so might have to be moved back to constant/" << nl
<< endl;
word startFrom(runTime.controlDict().lookup("startFrom"));
if (startFrom != "latestTime")
{
WarningInFunction
<< "To run splitMeshRegions please set your"
<< " startFrom entry to latestTime" << endl;
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //