openfoam/src/finiteVolume/cfdTools/general/MRF/MRFZone.C

528 lines
13 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "MRFZone.H"
#include "fvMesh.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "fvMatrices.H"
#include "syncTools.H"
#include "faceSet.H"
#include "geometricOneField.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::MRFZone, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::MRFZone::setMRFFaces()
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
// Type per face:
// 0:not in zone
// 1:moving with frame
// 2:other
labelList faceType(mesh_.nFaces(), 0);
// Determine faces in cell zone
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// (without constructing cells)
const labelList& own = mesh_.faceOwner();
const labelList& nei = mesh_.faceNeighbour();
// Cells in zone
boolList zoneCell(mesh_.nCells(), false);
if (cellZoneID_ != -1)
{
const labelList& cellLabels = mesh_.cellZones()[cellZoneID_];
forAll(cellLabels, i)
{
zoneCell[cellLabels[i]] = true;
}
}
label nZoneFaces = 0;
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
if (zoneCell[own[faceI]] || zoneCell[nei[faceI]])
{
faceType[faceI] = 1;
nZoneFaces++;
}
}
labelHashSet excludedPatches(excludedPatchLabels_);
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled() || excludedPatches.found(patchI))
{
forAll(pp, i)
{
label faceI = pp.start()+i;
if (zoneCell[own[faceI]])
{
faceType[faceI] = 2;
nZoneFaces++;
}
}
}
else if (!isA<emptyPolyPatch>(pp))
{
forAll(pp, i)
{
label faceI = pp.start()+i;
if (zoneCell[own[faceI]])
{
faceType[faceI] = 1;
nZoneFaces++;
}
}
}
}
// Now we have for faceType:
// 0 : face not in cellZone
// 1 : internal face or normal patch face
// 2 : coupled patch face or excluded patch face
// Sort into lists per patch.
internalFaces_.setSize(mesh_.nFaces());
label nInternal = 0;
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
if (faceType[faceI] == 1)
{
internalFaces_[nInternal++] = faceI;
}
}
internalFaces_.setSize(nInternal);
labelList nIncludedFaces(patches.size(), 0);
labelList nExcludedFaces(patches.size(), 0);
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
forAll(pp, patchFacei)
{
label faceI = pp.start()+patchFacei;
if (faceType[faceI] == 1)
{
nIncludedFaces[patchi]++;
}
else if (faceType[faceI] == 2)
{
nExcludedFaces[patchi]++;
}
}
}
includedFaces_.setSize(patches.size());
excludedFaces_.setSize(patches.size());
forAll(nIncludedFaces, patchi)
{
includedFaces_[patchi].setSize(nIncludedFaces[patchi]);
excludedFaces_[patchi].setSize(nExcludedFaces[patchi]);
}
nIncludedFaces = 0;
nExcludedFaces = 0;
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
forAll(pp, patchFacei)
{
label faceI = pp.start()+patchFacei;
if (faceType[faceI] == 1)
{
includedFaces_[patchi][nIncludedFaces[patchi]++] = patchFacei;
}
else if (faceType[faceI] == 2)
{
excludedFaces_[patchi][nExcludedFaces[patchi]++] = patchFacei;
}
}
}
if (debug)
{
faceSet internalFaces(mesh_, "internalFaces", internalFaces_);
Pout<< "Writing " << internalFaces.size()
<< " internal faces in MRF zone to faceSet "
<< internalFaces.name() << endl;
internalFaces.write();
faceSet MRFFaces(mesh_, "includedFaces", 100);
forAll(includedFaces_, patchi)
{
forAll(includedFaces_[patchi], i)
{
label patchFacei = includedFaces_[patchi][i];
MRFFaces.insert(patches[patchi].start()+patchFacei);
}
}
Pout<< "Writing " << MRFFaces.size()
<< " patch faces in MRF zone to faceSet "
<< MRFFaces.name() << endl;
MRFFaces.write();
faceSet excludedFaces(mesh_, "excludedFaces", 100);
forAll(excludedFaces_, patchi)
{
forAll(excludedFaces_[patchi], i)
{
label patchFacei = excludedFaces_[patchi][i];
excludedFaces.insert(patches[patchi].start()+patchFacei);
}
}
Pout<< "Writing " << excludedFaces.size()
<< " faces in MRF zone with special handling to faceSet "
<< excludedFaces.name() << endl;
excludedFaces.write();
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::MRFZone::MRFZone(const fvMesh& mesh, Istream& is)
:
mesh_(mesh),
name_(is),
dict_(is),
cellZoneID_(mesh_.cellZones().findZoneID(name_)),
excludedPatchNames_
(
dict_.lookupOrDefault("nonRotatingPatches", wordList(0))
),
origin_(dict_.lookup("origin")),
axis_(dict_.lookup("axis")),
omega_(dict_.lookup("omega")),
Omega_("Omega", omega_*axis_)
{
if (dict_.found("patches"))
{
WarningIn("MRFZone(const fvMesh&, Istream&)")
<< "Ignoring entry 'patches'\n"
<< " By default all patches within the rotating region rotate.\n"
<< " Optionally supply excluded patches "
<< "using 'nonRotatingPatches'."
<< endl;
}
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
axis_ = axis_/mag(axis_);
Omega_ = omega_*axis_;
excludedPatchLabels_.setSize(excludedPatchNames_.size());
forAll(excludedPatchNames_, i)
{
excludedPatchLabels_[i] = patches.findPatchID(excludedPatchNames_[i]);
if (excludedPatchLabels_[i] == -1)
{
FatalErrorIn
(
"Foam::MRFZone::MRFZone(const fvMesh&, Istream&)"
) << "cannot find MRF patch " << excludedPatchNames_[i]
<< exit(FatalError);
}
}
bool cellZoneFound = (cellZoneID_ != -1);
reduce(cellZoneFound, orOp<bool>());
if (!cellZoneFound)
{
FatalErrorIn
(
"Foam::MRFZone::MRFZone(const fvMesh&, Istream&)"
) << "cannot find MRF cellZone " << name_
<< exit(FatalError);
}
setMRFFaces();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::MRFZone::addCoriolis
(
const volVectorField& U,
volVectorField& ddtU
) const
{
if (cellZoneID_ == -1)
{
return;
}
const labelList& cells = mesh_.cellZones()[cellZoneID_];
const scalarField& V = mesh_.V();
vectorField& ddtUc = ddtU.internalField();
const vectorField& Uc = U.internalField();
const vector& Omega = Omega_.value();
forAll(cells, i)
{
label celli = cells[i];
ddtUc[celli] += V[celli]*(Omega ^ Uc[celli]);
}
}
void Foam::MRFZone::addCoriolis(fvVectorMatrix& UEqn) const
{
if (cellZoneID_ == -1)
{
return;
}
const labelList& cells = mesh_.cellZones()[cellZoneID_];
const scalarField& V = mesh_.V();
vectorField& Usource = UEqn.source();
const vectorField& U = UEqn.psi();
const vector& Omega = Omega_.value();
forAll(cells, i)
{
label celli = cells[i];
Usource[celli] -= V[celli]*(Omega ^ U[celli]);
}
}
void Foam::MRFZone::addCoriolis
(
const volScalarField& rho,
fvVectorMatrix& UEqn
) const
{
if (cellZoneID_ == -1)
{
return;
}
const labelList& cells = mesh_.cellZones()[cellZoneID_];
const scalarField& V = mesh_.V();
vectorField& Usource = UEqn.source();
const vectorField& U = UEqn.psi();
const vector& Omega = Omega_.value();
forAll(cells, i)
{
label celli = cells[i];
Usource[celli] -= V[celli]*rho[celli]*(Omega ^ U[celli]);
}
}
void Foam::MRFZone::relativeVelocity(volVectorField& U) const
{
const volVectorField& C = mesh_.C();
const vector& origin = origin_.value();
const vector& Omega = Omega_.value();
const labelList& cells = mesh_.cellZones()[cellZoneID_];
forAll(cells, i)
{
label celli = cells[i];
U[celli] -= (Omega ^ (C[celli] - origin));
}
// Included patches
forAll(includedFaces_, patchi)
{
forAll(includedFaces_[patchi], i)
{
label patchFacei = includedFaces_[patchi][i];
U.boundaryField()[patchi][patchFacei] = vector::zero;
}
}
// Excluded patches
forAll(excludedFaces_, patchi)
{
forAll(excludedFaces_[patchi], i)
{
label patchFacei = excludedFaces_[patchi][i];
U.boundaryField()[patchi][patchFacei] -=
(Omega
^ (C.boundaryField()[patchi][patchFacei] - origin));
}
}
}
void Foam::MRFZone::absoluteVelocity(volVectorField& U) const
{
const volVectorField& C = mesh_.C();
const vector& origin = origin_.value();
const vector& Omega = Omega_.value();
const labelList& cells = mesh_.cellZones()[cellZoneID_];
forAll(cells, i)
{
label celli = cells[i];
U[celli] += (Omega ^ (C[celli] - origin));
}
// Included patches
forAll(includedFaces_, patchi)
{
forAll(includedFaces_[patchi], i)
{
label patchFacei = includedFaces_[patchi][i];
U.boundaryField()[patchi][patchFacei] =
(Omega ^ (C.boundaryField()[patchi][patchFacei] - origin));
}
}
// Excluded patches
forAll(excludedFaces_, patchi)
{
forAll(excludedFaces_[patchi], i)
{
label patchFacei = excludedFaces_[patchi][i];
U.boundaryField()[patchi][patchFacei] +=
(Omega ^ (C.boundaryField()[patchi][patchFacei] - origin));
}
}
}
void Foam::MRFZone::relativeFlux(surfaceScalarField& phi) const
{
relativeRhoFlux(geometricOneField(), phi);
}
void Foam::MRFZone::relativeFlux
(
const surfaceScalarField& rho,
surfaceScalarField& phi
) const
{
relativeRhoFlux(rho, phi);
}
void Foam::MRFZone::absoluteFlux(surfaceScalarField& phi) const
{
absoluteRhoFlux(geometricOneField(), phi);
}
void Foam::MRFZone::absoluteFlux
(
const surfaceScalarField& rho,
surfaceScalarField& phi
) const
{
absoluteRhoFlux(rho, phi);
}
void Foam::MRFZone::correctBoundaryVelocity(volVectorField& U) const
{
const vector& origin = origin_.value();
const vector& Omega = Omega_.value();
// Included patches
forAll(includedFaces_, patchi)
{
const vectorField& patchC = mesh_.Cf().boundaryField()[patchi];
vectorField pfld(U.boundaryField()[patchi]);
forAll(includedFaces_[patchi], i)
{
label patchFacei = includedFaces_[patchi][i];
pfld[patchFacei] = (Omega ^ (patchC[patchFacei] - origin));
}
U.boundaryField()[patchi] == pfld;
}
}
Foam::Ostream& Foam::operator<<(Ostream& os, const MRFZone& MRF)
{
os << indent << nl;
os.write(MRF.name_) << nl;
os << token::BEGIN_BLOCK << incrIndent << nl;
os.writeKeyword("origin") << MRF.origin_ << token::END_STATEMENT << nl;
os.writeKeyword("axis") << MRF.axis_ << token::END_STATEMENT << nl;
os.writeKeyword("omega") << MRF.omega_ << token::END_STATEMENT << nl;
if (MRF.excludedPatchNames_.size())
{
os.writeKeyword("nonRotatingPatches") << MRF.excludedPatchNames_
<< token::END_STATEMENT << nl;
}
os << decrIndent << token::END_BLOCK << nl;
return os;
}
// ************************************************************************* //