- newer naming allows for less confusing code. Eg, max(lower) -> clamp_min(lower) min(upper) -> clamp_max(upper) - prefer combined method, for few operations. Eg, max(lower) + min(upper) -> clamp_range(lower, upper) The updated naming also helps avoid some obvious coding errors. Eg, Re.min(1200.0); Re.max(18800.0); instead of Re.clamp_range(1200.0, 18800.0); - can also use implicit conversion of zero_one to MinMax<Type> for this type of code: lambda_.clamp_range(zero_one{});
352 lines
9.0 KiB
C
352 lines
9.0 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | www.openfoam.com
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
Copyright (C) 2013-2018 OpenFOAM Foundation
|
|
Copyright (C) 2020 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "twoPhaseSystem.H"
|
|
#include "dragModel.H"
|
|
#include "virtualMassModel.H"
|
|
|
|
#include "MULES.H"
|
|
#include "subCycle.H"
|
|
#include "UniformField.H"
|
|
|
|
#include "fvcDdt.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcFlux.H"
|
|
#include "fvcSup.H"
|
|
|
|
#include "fvmDdt.H"
|
|
#include "fvmLaplacian.H"
|
|
#include "fvmSup.H"
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
defineTypeNameAndDebug(twoPhaseSystem, 0);
|
|
defineRunTimeSelectionTable(twoPhaseSystem, dictionary);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::twoPhaseSystem::twoPhaseSystem
|
|
(
|
|
const fvMesh& mesh
|
|
)
|
|
:
|
|
phaseSystem(mesh),
|
|
phase1_(phaseModels_[0]),
|
|
phase2_(phaseModels_[1])
|
|
{
|
|
phase2_.volScalarField::operator=(scalar(1) - phase1_);
|
|
|
|
volScalarField& alpha1 = phase1_;
|
|
mesh.setFluxRequired(alpha1.name());
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
|
|
|
|
Foam::twoPhaseSystem::~twoPhaseSystem()
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::twoPhaseSystem::sigma() const
|
|
{
|
|
return sigma
|
|
(
|
|
phasePairKey(phase1().name(), phase2().name())
|
|
);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::twoPhaseSystem::Kd() const
|
|
{
|
|
return Kd
|
|
(
|
|
phasePairKey(phase1().name(), phase2().name())
|
|
);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField>
|
|
Foam::twoPhaseSystem::Kdf() const
|
|
{
|
|
return Kdf
|
|
(
|
|
phasePairKey(phase1().name(), phase2().name())
|
|
);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::twoPhaseSystem::Vm() const
|
|
{
|
|
return Vm
|
|
(
|
|
phasePairKey(phase1().name(), phase2().name())
|
|
);
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::solve()
|
|
{
|
|
const Time& runTime = mesh_.time();
|
|
|
|
volScalarField& alpha1 = phase1_;
|
|
volScalarField& alpha2 = phase2_;
|
|
|
|
const dictionary& alphaControls = mesh_.solverDict(alpha1.name());
|
|
|
|
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
|
|
label nAlphaCorr(alphaControls.get<label>("nAlphaCorr"));
|
|
|
|
bool LTS = fv::localEulerDdt::enabled(mesh_);
|
|
|
|
word alphaScheme("div(phi," + alpha1.name() + ')');
|
|
word alpharScheme("div(phir," + alpha1.name() + ')');
|
|
|
|
const surfaceScalarField& phi1 = phase1_.phi();
|
|
const surfaceScalarField& phi2 = phase2_.phi();
|
|
|
|
// Construct the dilatation rate source term
|
|
tmp<volScalarField::Internal> tdgdt;
|
|
|
|
if (phase1_.divU().valid() && phase2_.divU().valid())
|
|
{
|
|
tdgdt =
|
|
(
|
|
alpha2()
|
|
*phase1_.divU()()()
|
|
- alpha1()
|
|
*phase2_.divU()()()
|
|
);
|
|
}
|
|
else if (phase1_.divU().valid())
|
|
{
|
|
tdgdt =
|
|
(
|
|
alpha2()
|
|
*phase1_.divU()()()
|
|
);
|
|
}
|
|
else if (phase2_.divU().valid())
|
|
{
|
|
tdgdt =
|
|
(
|
|
- alpha1()
|
|
*phase2_.divU()()()
|
|
);
|
|
}
|
|
|
|
alpha1.correctBoundaryConditions();
|
|
|
|
surfaceScalarField phir("phir", phi1 - phi2);
|
|
|
|
tmp<surfaceScalarField> alphaDbyA;
|
|
if (DByAfs().found(phase1_.name()) && DByAfs().found(phase2_.name()))
|
|
{
|
|
surfaceScalarField DbyA
|
|
(
|
|
*DByAfs()[phase1_.name()] + *DByAfs()[phase2_.name()]
|
|
);
|
|
|
|
alphaDbyA =
|
|
fvc::interpolate(max(alpha1, scalar(0)))
|
|
*fvc::interpolate(max(alpha2, scalar(0)))
|
|
*DbyA;
|
|
|
|
phir += DbyA*fvc::snGrad(alpha1, "bounded")*mesh_.magSf();
|
|
}
|
|
|
|
for (int acorr=0; acorr<nAlphaCorr; acorr++)
|
|
{
|
|
volScalarField::Internal Sp
|
|
(
|
|
IOobject
|
|
(
|
|
"Sp",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless/dimTime)
|
|
);
|
|
|
|
volScalarField::Internal Su
|
|
(
|
|
IOobject
|
|
(
|
|
"Su",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
// Divergence term is handled explicitly to be
|
|
// consistent with the explicit transport solution
|
|
fvc::div(phi_)*min(alpha1, scalar(1))
|
|
);
|
|
|
|
if (tdgdt.valid())
|
|
{
|
|
scalarField& dgdt = tdgdt.ref();
|
|
|
|
forAll(dgdt, celli)
|
|
{
|
|
if (dgdt[celli] > 0.0)
|
|
{
|
|
Sp[celli] -= dgdt[celli]/max(1 - alpha1[celli], 1e-4);
|
|
Su[celli] += dgdt[celli]/max(1 - alpha1[celli], 1e-4);
|
|
}
|
|
else if (dgdt[celli] < 0.0)
|
|
{
|
|
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
|
|
}
|
|
}
|
|
}
|
|
|
|
surfaceScalarField alphaPhi1
|
|
(
|
|
fvc::flux
|
|
(
|
|
phi_,
|
|
alpha1,
|
|
alphaScheme
|
|
)
|
|
+ fvc::flux
|
|
(
|
|
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
|
|
alpha1,
|
|
alpharScheme
|
|
)
|
|
);
|
|
|
|
phase1_.correctInflowOutflow(alphaPhi1);
|
|
|
|
if (nAlphaSubCycles > 1)
|
|
{
|
|
tmp<volScalarField> trSubDeltaT;
|
|
|
|
if (LTS)
|
|
{
|
|
trSubDeltaT =
|
|
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
|
|
}
|
|
|
|
for
|
|
(
|
|
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
|
|
!(++alphaSubCycle).end();
|
|
)
|
|
{
|
|
surfaceScalarField alphaPhi10(alphaPhi1);
|
|
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha1,
|
|
phi_,
|
|
alphaPhi10,
|
|
(alphaSubCycle.index()*Sp)(),
|
|
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
|
|
UniformField<scalar>(phase1_.alphaMax()),
|
|
zeroField()
|
|
);
|
|
|
|
if (alphaSubCycle.index() == 1)
|
|
{
|
|
phase1_.alphaPhiRef() = alphaPhi10;
|
|
}
|
|
else
|
|
{
|
|
phase1_.alphaPhiRef() += alphaPhi10;
|
|
}
|
|
}
|
|
|
|
phase1_.alphaPhiRef() /= nAlphaSubCycles;
|
|
}
|
|
else
|
|
{
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha1,
|
|
phi_,
|
|
alphaPhi1,
|
|
Sp,
|
|
Su,
|
|
UniformField<scalar>(phase1_.alphaMax()),
|
|
zeroField()
|
|
);
|
|
|
|
phase1_.alphaPhiRef() = alphaPhi1;
|
|
}
|
|
|
|
if (alphaDbyA.valid())
|
|
{
|
|
fvScalarMatrix alpha1Eqn
|
|
(
|
|
fvm::ddt(alpha1) - fvc::ddt(alpha1)
|
|
- fvm::laplacian(alphaDbyA(), alpha1, "bounded")
|
|
);
|
|
|
|
alpha1Eqn.relax();
|
|
alpha1Eqn.solve();
|
|
|
|
phase1_.alphaPhiRef() += alpha1Eqn.flux();
|
|
}
|
|
|
|
phase1_.alphaRhoPhiRef() =
|
|
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
|
|
|
|
phase2_.alphaPhiRef() = phi_ - phase1_.alphaPhi();
|
|
phase2_.correctInflowOutflow(phase2_.alphaPhiRef());
|
|
phase2_.alphaRhoPhiRef() =
|
|
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
|
|
|
|
Info<< alpha1.name() << " volume fraction = "
|
|
<< alpha1.weightedAverage(mesh_.V()).value()
|
|
<< " Min(alpha1) = " << min(alpha1).value()
|
|
<< " Max(alpha1) = " << max(alpha1).value()
|
|
<< endl;
|
|
|
|
// Ensure the phase-fractions are bounded
|
|
alpha1.clamp_range(SMALL, 1 - SMALL);
|
|
|
|
// Update the phase-fraction of the other phase
|
|
alpha2 = scalar(1) - alpha1;
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|