openfoam/applications/solvers/multiphase/interFoam/createFields.H
2013-11-26 21:16:51 +00:00

141 lines
3.1 KiB
C

Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Reading transportProperties\n" << endl;
incompressibleTwoPhaseMixture twoPhaseProperties(U, phi);
volScalarField& alpha1(twoPhaseProperties.alpha1());
volScalarField& alpha2(twoPhaseProperties.alpha2());
const dimensionedScalar& rho1 = twoPhaseProperties.rho1();
const dimensionedScalar& rho2 = twoPhaseProperties.rho2();
// Need to store rho for ddt(rho, U)
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT
),
alpha1*rho1 + alpha2*rho2,
alpha1.boundaryField().types()
);
rho.oldTime();
// Mass flux
// Initialisation does not matter because rhoPhi is reset after the
// alpha1 solution before it is used in the U equation.
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("0", dimMass/dimTime, 0)
);
// Construct interface from alpha1 distribution
interfaceProperties interface(alpha1, U, twoPhaseProperties);
// Construct incompressible turbulence model
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, twoPhaseProperties)
);
#include "readGravitationalAcceleration.H"
/*
dimensionedVector g0(g);
// Read the data file and initialise the interpolation table
interpolationTable<vector> timeSeriesAcceleration
(
runTime.path()/runTime.caseConstant()/"acceleration.dat"
);
*/
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rho*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
mesh.solutionDict().subDict("PIMPLE"),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
fv::IOoptionList fvOptions(mesh);
tmp<surfaceScalarField> tphiAlphaCorr0;