openfoam/applications/solvers/multiphase/multiphaseEulerFoam/pEqn.H

295 lines
7.9 KiB
C

{
// rho1 = rho10 + psi1*p;
// rho2 = rho20 + psi2*p;
// tmp<fvScalarMatrix> pEqnComp1;
// tmp<fvScalarMatrix> pEqnComp2;
// //if (transonic)
// //{
// //}
// //else
// {
// surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi1);
// surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi2);
// pEqnComp1 =
// fvc::ddt(rho1) + psi1*correction(fvm::ddt(p))
// + fvc::div(phid1, p)
// - fvc::Sp(fvc::div(phid1), p);
// pEqnComp2 =
// fvc::ddt(rho2) + psi2*correction(fvm::ddt(p))
// + fvc::div(phid2, p)
// - fvc::Sp(fvc::div(phid2), p);
// }
PtrList<surfaceScalarField> alphafs(fluid.phases().size());
PtrList<volVectorField> HbyAs(fluid.phases().size());
PtrList<surfaceScalarField> phiHbyAs(fluid.phases().size());
PtrList<volScalarField> rAUs(fluid.phases().size());
PtrList<surfaceScalarField> rAlphaAUfs(fluid.phases().size());
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
mrfZones.makeAbsolute(phase.phi().oldTime());
mrfZones.makeAbsolute(phase.phi());
HbyAs.set(phasei, new volVectorField(phase.U()));
phiHbyAs.set(phasei, new surfaceScalarField(1.0*phase.phi()));
phasei++;
}
surfaceScalarField phiHbyA
(
IOobject
(
"phiHbyA",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("phiHbyA", dimArea*dimVelocity, 0)
);
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
const volScalarField& alpha = phase;
alphafs.set(phasei, fvc::interpolate(alpha).ptr());
volScalarField dragCoeffi
(
IOobject
(
"dragCoeffi",
runTime.timeName(),
mesh
),
fluid.dragCoeff(phase, dragCoeffs())/phase.rho(),
zeroGradientFvPatchScalarField::typeName
);
dragCoeffi.correctBoundaryConditions();
rAUs.set(phasei, (1.0/(UEqns[phasei].A() + dragCoeffi)).ptr());
rAlphaAUfs.set
(
phasei,
(
alphafs[phasei]
/fvc::interpolate(UEqns[phasei].A() + dragCoeffi)
).ptr()
);
HbyAs[phasei] = rAUs[phasei]*UEqns[phasei].H();
phiHbyAs[phasei] =
(
(fvc::interpolate(HbyAs[phasei]) & mesh.Sf())
+ rAlphaAUfs[phasei]*fvc::ddtCorr(phase.U(), phase.phi())
);
mrfZones.makeRelative(phiHbyAs[phasei]);
mrfZones.makeRelative(phase.phi().oldTime());
mrfZones.makeRelative(phase.phi());
phiHbyAs[phasei] +=
rAlphaAUfs[phasei]
*(
fluid.surfaceTension(phase)*mesh.magSf()/phase.rho()
+ (g & mesh.Sf())
);
multiphaseSystem::dragModelTable::const_iterator dmIter =
fluid.dragModels().begin();
multiphaseSystem::dragCoeffFields::const_iterator dcIter =
dragCoeffs().begin();
for
(
;
dmIter != fluid.dragModels().end() && dcIter != dragCoeffs().end();
++dmIter, ++dcIter
)
{
const phaseModel *phase2Ptr = NULL;
if (&phase == &dmIter()->phase1())
{
phase2Ptr = &dmIter()->phase2();
}
else if (&phase == &dmIter()->phase2())
{
phase2Ptr = &dmIter()->phase1();
}
else
{
continue;
}
phiHbyAs[phasei] +=
fvc::interpolate((*dcIter())/phase.rho())
/fvc::interpolate(UEqns[phasei].A() + dragCoeffi)
*phase2Ptr->phi();
HbyAs[phasei] +=
(1.0/phase.rho())*rAUs[phasei]*(*dcIter())
*phase2Ptr->U();
// Alternative flux-pressure consistent drag
// but not momentum conservative
//
// HbyAs[phasei] += fvc::reconstruct
// (
// fvc::interpolate
// (
// (1.0/phase.rho())*rAUs[phasei]*(*dcIter())
// )*phase2Ptr->phi()
// );
}
phiHbyA += alphafs[phasei]*phiHbyAs[phasei];
phasei++;
}
surfaceScalarField rAUf
(
IOobject
(
"rAUf",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("rAUf", dimensionSet(-1, 3, 1, 0, 0), 0)
);
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
rAUf += mag(alphafs[phasei]*rAlphaAUfs[phasei])/phase.rho();
phasei++;
}
// Update the fixedFluxPressure BCs to ensure flux consistency
{
surfaceScalarField::GeometricBoundaryField phib(phi.boundaryField());
phib = 0;
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
phib +=
alphafs[phasei].boundaryField()
*(mesh.Sf().boundaryField() & phase.U().boundaryField());
phasei++;
}
setSnGrad<fixedFluxPressureFvPatchScalarField>
(
p.boundaryField(),
(
phiHbyA.boundaryField() - mrfZones.relative(phib)
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
);
}
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p)
);
pEqnIncomp.setReference(pRefCell, pRefValue);
solve
(
// (
// (alpha1/rho1)*pEqnComp1()
// + (alpha2/rho2)*pEqnComp2()
// ) +
pEqnIncomp,
mesh.solver(p.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
surfaceScalarField mSfGradp(pEqnIncomp.flux()/rAUf);
phasei = 0;
phi = dimensionedScalar("phi", phi.dimensions(), 0);
forAllIter(PtrDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
phase.phi() =
phiHbyAs[phasei]
+ rAlphaAUfs[phasei]*mSfGradp/phase.rho();
phi +=
alphafs[phasei]*phiHbyAs[phasei]
+ mag(alphafs[phasei]*rAlphaAUfs[phasei])
*mSfGradp/phase.rho();
phasei++;
}
// dgdt =
// (
// pos(alpha2)*(pEqnComp2 & p)/rho2
// - pos(alpha1)*(pEqnComp1 & p)/rho1
// );
p.relax();
mSfGradp = pEqnIncomp.flux()/rAUf;
U = dimensionedVector("U", dimVelocity, vector::zero);
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
const volScalarField& alpha = phase;
phase.U() =
HbyAs[phasei]
+ fvc::reconstruct
(
rAlphaAUfs[phasei]*(g & mesh.Sf())
+ rAlphaAUfs[phasei]*mSfGradp/phase.rho()
);
//phase.U() = fvc::reconstruct(phase.phi());
phase.U().correctBoundaryConditions();
U += alpha*phase.U();
phasei++;
}
}
}
//p = max(p, pMin);
#include "continuityErrs.H"
// rho1 = rho10 + psi1*p;
// rho2 = rho20 + psi2*p;
// Dp1Dt = fvc::DDt(phi1, p);
// Dp2Dt = fvc::DDt(phi2, p);
}