openfoam/applications/solvers/multiphase/interIsoFoam/interIsoFoam.C
Henning Scheufler 44a84d4778 CONT: Addition of compressibleIsoInterFOam and PLIC
1) Implementation of the compressibleIsoInterFOam solver
   2) Implementation of a new PLIC interpolation scheme.
   3) New tutorials associated with the solvers

This implementation was carried out by Henning Scheufler (DLR) and Johan
Roenby (DHI), following :

\verbatim

Henning Scheufler, Johan Roenby,
Accurate and efficient surface reconstruction from volume fraction data
on general meshes, Journal of Computational Physics, 2019, doi
10.1016/j.jcp.2019.01.009

\endverbatim

The integration of the code was carried out by Andy Heather and Sergio
Ferraris from OpenCFD Ltd.
2020-06-09 08:11:04 +01:00

200 lines
5.9 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2016 DHI
Copyright (C) 2017 OpenCFD Ltd.
Copyright (C) 2018 Johan Roenby
Copyright (C) 2019-2020 DLR
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
interIsoFoam
Group
grpMultiphaseSolvers
Description
Solver derived from interFoam for two incompressible, isothermal immiscible
fluids using the isoAdvector phase-fraction based interface capturing
approach, with optional mesh motion and mesh topology changes including
adaptive re-meshing.
Reference:
\verbatim
Roenby, J., Bredmose, H. and Jasak, H. (2016).
A computational method for sharp interface advection
Royal Society Open Science, 3
doi 10.1098/rsos.160405
\endverbatim
isoAdvector code supplied by Johan Roenby, STROMNING (2018)
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "isoAdvection.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"
#include "dynamicRefineFvMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two incompressible, isothermal immiscible fluids"
" using isoAdvector phase-fraction based interface capturing.\n"
"With optional mesh motion and mesh topology changes including"
" adaptive re-meshing.\n"
"The solver is derived from interFoam"
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "initCorrectPhi.H"
#include "createUfIfPresent.H"
turbulence->validate();
#include "CourantNo.H"
#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
if (isA<dynamicRefineFvMesh>(mesh))
{
advector.surf().reconstruct();
}
mesh.update();
if (mesh.changing())
{
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
if (isA<dynamicRefineFvMesh>(mesh))
{
advector.surf().mapAlphaField();
alpha2 = 1.0 - alpha1;
alpha2.correctBoundaryConditions();
rho == alpha1*rho1 + alpha2*rho2;
rho.correctBoundaryConditions();
rho.oldTime() = rho;
alpha2.oldTime() = alpha2;
}
MRF.update();
if (correctPhi)
{
// Calculate absolute flux
// from the mapped surface velocity
phi = mesh.Sf() & Uf();
#include "correctPhi.H"
// Make the flux relative to the mesh motion
fvc::makeRelative(phi, U);
mixture.correct();
}
if (checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
}
#include "alphaControls.H"
#include "alphaEqnSubCycle.H"
mixture.correct();
if (pimple.frozenFlow())
{
continue;
}
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //