- for cases where a 3D tensor is being used to represent 2D content, the determinant is zero. Can use inv2D(excludeDirection) to compensate and invert as if it were only 2D. ENH: consistent definitions for magSqr of symmTensors, diagSqr() norm COMP: return scalar not component type for magSqr - had inconsistent definitions with SymmTensor returning the component type and Tensor returning scalar. Only evident with complex.
400 lines
9.7 KiB
C++
400 lines
9.7 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | www.openfoam.com
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
Copyright (C) 2011-2016 OpenFOAM Foundation
|
|
Copyright (C) 2020-2023 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "SphericalTensor.H"
|
|
#include "SymmTensor.H"
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
template<class Cmpt>
|
|
inline Foam::DiagTensor<Cmpt>::DiagTensor(const Foam::zero)
|
|
:
|
|
VectorSpace<DiagTensor<Cmpt>, Cmpt, 3>(Zero)
|
|
{}
|
|
|
|
|
|
template<class Cmpt>
|
|
template<class Cmpt2>
|
|
inline Foam::DiagTensor<Cmpt>::DiagTensor
|
|
(
|
|
const VectorSpace<DiagTensor<Cmpt2>, Cmpt2, 3>& vs
|
|
)
|
|
:
|
|
VectorSpace<DiagTensor<Cmpt>, Cmpt, 3>(vs)
|
|
{}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline Foam::DiagTensor<Cmpt>::DiagTensor(const SphericalTensor<Cmpt>& st)
|
|
{
|
|
this->v_[XX] = st.ii();
|
|
this->v_[YY] = st.ii();
|
|
this->v_[ZZ] = st.ii();
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline Foam::DiagTensor<Cmpt>::DiagTensor
|
|
(
|
|
const Cmpt& vxx,
|
|
const Cmpt& vyy,
|
|
const Cmpt& vzz
|
|
)
|
|
{
|
|
this->v_[XX] = vxx;
|
|
this->v_[YY] = vyy;
|
|
this->v_[ZZ] = vzz;
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline Foam::DiagTensor<Cmpt>::DiagTensor(Istream& is)
|
|
:
|
|
VectorSpace<DiagTensor<Cmpt>, Cmpt, 3>(is)
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
template<class Cmpt>
|
|
inline Foam::scalar Foam::DiagTensor<Cmpt>::diagSqr() const
|
|
{
|
|
return
|
|
(
|
|
Foam::magSqr(this->xx())
|
|
+ Foam::magSqr(this->yy())
|
|
+ Foam::magSqr(this->zz())
|
|
);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
|
|
// * * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * //
|
|
|
|
//- Return the trace of a DiagTensor
|
|
template<class Cmpt>
|
|
inline Cmpt tr(const DiagTensor<Cmpt>& dt)
|
|
{
|
|
return dt.xx() + dt.yy() + dt.zz();
|
|
}
|
|
|
|
|
|
//- Return the spherical part of a DiagTensor as a SphericalTensor
|
|
template<class Cmpt>
|
|
inline SphericalTensor<Cmpt> sph(const DiagTensor<Cmpt>& dt)
|
|
{
|
|
return SphericalTensor<Cmpt>
|
|
(
|
|
(1.0/3.0)*tr(dt)
|
|
);
|
|
}
|
|
|
|
|
|
//- Return the determinant of a DiagTensor
|
|
template<class Cmpt>
|
|
inline Cmpt det(const DiagTensor<Cmpt>& dt)
|
|
{
|
|
return dt.xx()*dt.yy()*dt.zz();
|
|
}
|
|
|
|
|
|
//- Return the inverse of a DiagTensor as a DiagTensor
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt> inv(const DiagTensor<Cmpt>& dt)
|
|
{
|
|
#ifdef FULLDEBUG
|
|
if (mag(det(dt)) < VSMALL)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "DiagTensor is not invertible due to the zero determinant:"
|
|
<< "det(DiagTensor) = " << det(dt)
|
|
<< abort(FatalError);
|
|
}
|
|
#endif
|
|
|
|
return DiagTensor<Cmpt>(1/dt.xx(), 1/dt.yy(), 1/dt.zz());
|
|
}
|
|
|
|
|
|
//- Return the diagonal of a Tensor as a DiagTensor
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt> diag(const Tensor<Cmpt>& t)
|
|
{
|
|
return DiagTensor<Cmpt>(t.xx(), t.yy(), t.zz());
|
|
}
|
|
|
|
|
|
//- Return the diagonal of a SymmTensor as a DiagTensor
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt> diag(const SymmTensor<Cmpt>& st)
|
|
{
|
|
return DiagTensor<Cmpt>(st.xx(), st.yy(), st.zz());
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline Foam::scalar magSqr(const DiagTensor<Cmpt>& t)
|
|
{
|
|
return t.diagSqr();
|
|
}
|
|
|
|
|
|
//- Linear interpolation of diagonal tensors a and b by factor t
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt> lerp
|
|
(
|
|
const DiagTensor<Cmpt>& a,
|
|
const DiagTensor<Cmpt>& b,
|
|
const scalar t
|
|
)
|
|
{
|
|
const scalar onet = (1-t);
|
|
|
|
return DiagTensor<Cmpt>
|
|
(
|
|
onet*a.xx() + t*b.xx(),
|
|
onet*a.yy() + t*b.yy(),
|
|
onet*a.zz() + t*b.zz()
|
|
);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * //
|
|
|
|
//- Sum of a DiagTensor and a Tensor
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt>
|
|
operator+(const DiagTensor<Cmpt>& dt1, const Tensor<Cmpt>& t2)
|
|
{
|
|
return Tensor<Cmpt>
|
|
(
|
|
dt1.xx() + t2.xx(), t2.xy(), t2.xz(),
|
|
t2.yx(), dt1.yy() + t2.yy(), t2.yz(),
|
|
t2.zx(), t2.zy(), dt1.zz() + t2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Sum of a Tensor and a DiagTensor
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt>
|
|
operator+(const Tensor<Cmpt>& t1, const DiagTensor<Cmpt>& dt2)
|
|
{
|
|
return Tensor<Cmpt>
|
|
(
|
|
t1.xx() + dt2.xx(), t1.xy(), t1.xz(),
|
|
t1.yx(), t1.yy() + dt2.yy(), t1.yz(),
|
|
t1.zx(), t1.zy(), t1.zz() + dt2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Subtract a Tensor from a DiagTensor
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt>
|
|
operator-(const DiagTensor<Cmpt>& dt1, const Tensor<Cmpt>& t2)
|
|
{
|
|
return Tensor<Cmpt>
|
|
(
|
|
dt1.xx() - t2.xx(), -t2.xy(), -t2.xz(),
|
|
-t2.yx(), dt1.yy() - t2.yy(), -t2.yz(),
|
|
-t2.zx(), -t2.zy(), dt1.zz() - t2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Subtract a DiagTensor from a Tensor
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt>
|
|
operator-(const Tensor<Cmpt>& t1, const DiagTensor<Cmpt>& dt2)
|
|
{
|
|
return Tensor<Cmpt>
|
|
(
|
|
t1.xx() - dt2.xx(), t1.xy(), t1.xz(),
|
|
t1.yx(), t1.yy() - dt2.yy(), t1.yz(),
|
|
t1.zx(), t1.zy(), t1.zz() - dt2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Division of a Cmpt by a DiagTensor
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt>
|
|
operator/(const Cmpt s, const DiagTensor<Cmpt>& dt)
|
|
{
|
|
#ifdef FULLDEBUG
|
|
if (mag(det(dt)) < VSMALL)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cmpt = " << s
|
|
<< " is not divisible by the DiagTensor due to a zero element:"
|
|
<< "DiagTensor = " << dt
|
|
<< abort(FatalError);
|
|
}
|
|
#endif
|
|
|
|
return DiagTensor<Cmpt>(s/dt.xx(), s/dt.yy(), s/dt.zz());
|
|
}
|
|
|
|
|
|
//- Division of a DiagTensor by a Cmpt
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt>
|
|
operator/(const DiagTensor<Cmpt>& dt, const Cmpt s)
|
|
{
|
|
#ifdef FULLDEBUG
|
|
if (mag(s) < VSMALL)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "DiagTensor = " << dt
|
|
<< " is not divisible due to a zero value in Cmpt:"
|
|
<< "Cmpt = " << s
|
|
<< abort(FatalError);
|
|
}
|
|
#endif
|
|
|
|
return DiagTensor<Cmpt>(dt.xx()/s, dt.yy()/s, dt.zz()/s);
|
|
}
|
|
|
|
|
|
//- Division of a Vector by a DiagTensor
|
|
template<class Cmpt>
|
|
inline Vector<Cmpt>
|
|
operator/(const Vector<Cmpt> v, const DiagTensor<Cmpt>& dt)
|
|
{
|
|
#ifdef FULLDEBUG
|
|
if (mag(det(dt)) < VSMALL)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Vector = " << v
|
|
<< " is not divisible by the DiagTensor due to a zero element:"
|
|
<< "DiagTensor = " << dt
|
|
<< abort(FatalError);
|
|
}
|
|
#endif
|
|
|
|
return Vector<Cmpt>(v.x()/dt.xx(), v.y()/dt.yy(), v.z()/dt.zz());
|
|
}
|
|
|
|
|
|
//- Inner-product of a DiagTensor and a DiagTensor
|
|
template<class Cmpt>
|
|
inline DiagTensor<Cmpt>
|
|
operator&(const DiagTensor<Cmpt>& dt1, const DiagTensor<Cmpt>& dt2)
|
|
{
|
|
return DiagTensor<Cmpt>
|
|
(
|
|
dt1.xx()*dt2.xx(),
|
|
dt1.yy()*dt2.yy(),
|
|
dt1.zz()*dt2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Inner-product of a DiagTensor and a Tensor
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt>
|
|
operator&(const DiagTensor<Cmpt>& dt1, const Tensor<Cmpt>& t2)
|
|
{
|
|
return Tensor<Cmpt>
|
|
(
|
|
dt1.xx()*t2.xx(),
|
|
dt1.xx()*t2.xy(),
|
|
dt1.xx()*t2.xz(),
|
|
|
|
dt1.yy()*t2.yx(),
|
|
dt1.yy()*t2.yy(),
|
|
dt1.yy()*t2.yz(),
|
|
|
|
dt1.zz()*t2.zx(),
|
|
dt1.zz()*t2.zy(),
|
|
dt1.zz()*t2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Inner-product of a Tensor and a DiagTensor
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt>
|
|
operator&(const Tensor<Cmpt>& t1, const DiagTensor<Cmpt>& dt2)
|
|
{
|
|
return Tensor<Cmpt>
|
|
(
|
|
t1.xx()*dt2.xx(),
|
|
t1.xy()*dt2.yy(),
|
|
t1.xz()*dt2.zz(),
|
|
|
|
t1.yx()*dt2.xx(),
|
|
t1.yy()*dt2.yy(),
|
|
t1.yz()*dt2.zz(),
|
|
|
|
t1.zx()*dt2.xx(),
|
|
t1.zy()*dt2.yy(),
|
|
t1.zz()*dt2.zz()
|
|
);
|
|
}
|
|
|
|
|
|
//- Inner-product of a DiagTensor and a Vector
|
|
template<class Cmpt>
|
|
inline Vector<Cmpt>
|
|
operator&(const DiagTensor<Cmpt>& dt, const Vector<Cmpt>& v)
|
|
{
|
|
return Vector<Cmpt>
|
|
(
|
|
dt.xx()*v.x(),
|
|
dt.yy()*v.y(),
|
|
dt.zz()*v.z()
|
|
);
|
|
}
|
|
|
|
|
|
//- Inner-product of a Vector and a DiagTensor
|
|
template<class Cmpt>
|
|
inline Vector<Cmpt>
|
|
operator&(const Vector<Cmpt>& v, const DiagTensor<Cmpt>& dt)
|
|
{
|
|
return Vector<Cmpt>
|
|
(
|
|
v.x()*dt.xx(),
|
|
v.y()*dt.yy(),
|
|
v.z()*dt.zz()
|
|
);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
} // End namespace Foam
|
|
|
|
// ************************************************************************* //
|