openfoam/applications/utilities/mesh/generation/snappyHexMesh/snappyHexMesh.C
Andrew Heather d8d6030ab6 INT: Integration of Mattijs' collocated parallel IO additions
Original commit message:
------------------------

Parallel IO: New collated file format

When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00

1732 lines
48 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015-2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
snappyHexMesh
Group
grpMeshGenerationUtilities
Description
Automatic split hex mesher. Refines and snaps to surface.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "fvMesh.H"
#include "snappyRefineDriver.H"
#include "snappySnapDriver.H"
#include "snappyLayerDriver.H"
#include "searchableSurfaces.H"
#include "refinementSurfaces.H"
#include "refinementFeatures.H"
#include "shellSurfaces.H"
#include "decompositionMethod.H"
#include "noDecomp.H"
#include "fvMeshDistribute.H"
#include "wallPolyPatch.H"
#include "refinementParameters.H"
#include "snapParameters.H"
#include "layerParameters.H"
#include "vtkSetWriter.H"
#include "faceSet.H"
#include "motionSmoother.H"
#include "polyTopoChange.H"
#include "cellModeller.H"
#include "uindirectPrimitivePatch.H"
#include "surfZoneIdentifierList.H"
#include "UnsortedMeshedSurface.H"
#include "MeshedSurface.H"
#include "globalIndex.H"
#include "IOmanip.H"
#include "decompositionModel.H"
#include "fvMeshTools.H"
#include "profiling.H"
#include "processorMeshes.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Convert size (as fraction of defaultCellSize) to refinement level
label sizeCoeffToRefinement
(
const scalar level0Coeff, // ratio of hex cell size v.s. defaultCellSize
const scalar sizeCoeff
)
{
return round(::log(level0Coeff/sizeCoeff)/::log(2));
}
autoPtr<refinementSurfaces> createRefinementSurfaces
(
const searchableSurfaces& allGeometry,
const dictionary& surfacesDict,
const dictionary& shapeControlDict,
const label gapLevelIncrement,
const scalar level0Coeff
)
{
autoPtr<refinementSurfaces> surfacePtr;
// Count number of surfaces.
label surfi = 0;
forAll(allGeometry.names(), geomi)
{
const word& geomName = allGeometry.names()[geomi];
if (surfacesDict.found(geomName))
{
surfi++;
}
}
labelList surfaces(surfi);
wordList names(surfi);
PtrList<surfaceZonesInfo> surfZones(surfi);
labelList regionOffset(surfi);
labelList globalMinLevel(surfi, 0);
labelList globalMaxLevel(surfi, 0);
labelList globalLevelIncr(surfi, 0);
PtrList<dictionary> globalPatchInfo(surfi);
List<Map<label>> regionMinLevel(surfi);
List<Map<label>> regionMaxLevel(surfi);
List<Map<label>> regionLevelIncr(surfi);
List<Map<scalar>> regionAngle(surfi);
List<Map<autoPtr<dictionary>>> regionPatchInfo(surfi);
HashSet<word> unmatchedKeys(surfacesDict.toc());
surfi = 0;
forAll(allGeometry.names(), geomi)
{
const word& geomName = allGeometry.names()[geomi];
const entry* ePtr = surfacesDict.lookupEntryPtr(geomName, false, true);
if (ePtr)
{
const dictionary& shapeDict = ePtr->dict();
unmatchedKeys.erase(ePtr->keyword());
names[surfi] = geomName;
surfaces[surfi] = geomi;
const searchableSurface& surface = allGeometry[geomi];
// Find the index in shapeControlDict
// Invert surfaceCellSize to get the refinementLevel
const word scsFuncName =
shapeDict.lookup("surfaceCellSizeFunction");
const dictionary& scsDict =
shapeDict.optionalSubDict(scsFuncName + "Coeffs");
const scalar surfaceCellSize =
readScalar(scsDict.lookup("surfaceCellSizeCoeff"));
const label refLevel = sizeCoeffToRefinement
(
level0Coeff,
surfaceCellSize
);
globalMinLevel[surfi] = refLevel;
globalMaxLevel[surfi] = refLevel;
globalLevelIncr[surfi] = gapLevelIncrement;
// Surface zones
surfZones.set(surfi, new surfaceZonesInfo(surface, shapeDict));
// Global perpendicular angle
if (shapeDict.found("patchInfo"))
{
globalPatchInfo.set
(
surfi,
shapeDict.subDict("patchInfo").clone()
);
}
// Per region override of patchInfo
if (shapeDict.found("regions"))
{
const dictionary& regionsDict = shapeDict.subDict("regions");
const wordList& regionNames =
allGeometry[surfaces[surfi]].regions();
forAll(regionNames, regioni)
{
if (regionsDict.found(regionNames[regioni]))
{
// Get the dictionary for region
const dictionary& regionDict = regionsDict.subDict
(
regionNames[regioni]
);
if (regionDict.found("patchInfo"))
{
regionPatchInfo[surfi].insert
(
regioni,
regionDict.subDict("patchInfo").clone()
);
}
}
}
}
// Per region override of cellSize
if (shapeDict.found("regions"))
{
const dictionary& shapeControlRegionsDict =
shapeDict.subDict("regions");
const wordList& regionNames =
allGeometry[surfaces[surfi]].regions();
forAll(regionNames, regioni)
{
if (shapeControlRegionsDict.found(regionNames[regioni]))
{
const dictionary& shapeControlRegionDict =
shapeControlRegionsDict.subDict
(
regionNames[regioni]
);
const word scsFuncName =
shapeControlRegionDict.lookup
(
"surfaceCellSizeFunction"
);
const dictionary& scsDict =
shapeControlRegionDict.subDict
(
scsFuncName + "Coeffs"
);
const scalar surfaceCellSize =
readScalar
(
scsDict.lookup("surfaceCellSizeCoeff")
);
const label refLevel = sizeCoeffToRefinement
(
level0Coeff,
surfaceCellSize
);
regionMinLevel[surfi].insert(regioni, refLevel);
regionMaxLevel[surfi].insert(regioni, refLevel);
regionLevelIncr[surfi].insert(regioni, 0);
}
}
}
surfi++;
}
}
// Calculate local to global region offset
label nRegions = 0;
forAll(surfaces, surfi)
{
regionOffset[surfi] = nRegions;
nRegions += allGeometry[surfaces[surfi]].regions().size();
}
// Rework surface specific information into information per global region
labelList minLevel(nRegions, 0);
labelList maxLevel(nRegions, 0);
labelList gapLevel(nRegions, -1);
PtrList<dictionary> patchInfo(nRegions);
forAll(globalMinLevel, surfi)
{
label nRegions = allGeometry[surfaces[surfi]].regions().size();
// Initialise to global (i.e. per surface)
for (label i = 0; i < nRegions; i++)
{
label globalRegioni = regionOffset[surfi] + i;
minLevel[globalRegioni] = globalMinLevel[surfi];
maxLevel[globalRegioni] = globalMaxLevel[surfi];
gapLevel[globalRegioni] =
maxLevel[globalRegioni]
+ globalLevelIncr[surfi];
if (globalPatchInfo.set(surfi))
{
patchInfo.set
(
globalRegioni,
globalPatchInfo[surfi].clone()
);
}
}
// Overwrite with region specific information
forAllConstIter(Map<label>, regionMinLevel[surfi], iter)
{
label globalRegioni = regionOffset[surfi] + iter.key();
minLevel[globalRegioni] = iter();
maxLevel[globalRegioni] = regionMaxLevel[surfi][iter.key()];
gapLevel[globalRegioni] =
maxLevel[globalRegioni]
+ regionLevelIncr[surfi][iter.key()];
}
const Map<autoPtr<dictionary>>& localInfo = regionPatchInfo[surfi];
forAllConstIter(Map<autoPtr<dictionary>>, localInfo, iter)
{
label globalRegioni = regionOffset[surfi] + iter.key();
patchInfo.set(globalRegioni, iter()().clone());
}
}
surfacePtr.set
(
new refinementSurfaces
(
allGeometry,
surfaces,
names,
surfZones,
regionOffset,
minLevel,
maxLevel,
gapLevel,
scalarField(nRegions, -GREAT), //perpendicularAngle,
patchInfo
)
);
const refinementSurfaces& rf = surfacePtr();
// Determine maximum region name length
label maxLen = 0;
forAll(rf.surfaces(), surfi)
{
label geomi = rf.surfaces()[surfi];
const wordList& regionNames = allGeometry.regionNames()[geomi];
forAll(regionNames, regioni)
{
maxLen = Foam::max(maxLen, label(regionNames[regioni].size()));
}
}
Info<< setw(maxLen) << "Region"
<< setw(10) << "Min Level"
<< setw(10) << "Max Level"
<< setw(10) << "Gap Level" << nl
<< setw(maxLen) << "------"
<< setw(10) << "---------"
<< setw(10) << "---------"
<< setw(10) << "---------" << endl;
forAll(rf.surfaces(), surfi)
{
label geomi = rf.surfaces()[surfi];
Info<< rf.names()[surfi] << ':' << nl;
const wordList& regionNames = allGeometry.regionNames()[geomi];
forAll(regionNames, regioni)
{
label globali = rf.globalRegion(surfi, regioni);
Info<< setw(maxLen) << regionNames[regioni]
<< setw(10) << rf.minLevel()[globali]
<< setw(10) << rf.maxLevel()[globali]
<< setw(10) << rf.gapLevel()[globali] << endl;
}
}
return surfacePtr;
}
void extractSurface
(
const polyMesh& mesh,
const Time& runTime,
const labelHashSet& includePatches,
const fileName& outFileName
)
{
const polyBoundaryMesh& bMesh = mesh.boundaryMesh();
// Collect sizes. Hash on names to handle local-only patches (e.g.
// processor patches)
HashTable<label> patchSize(1024);
label nFaces = 0;
forAllConstIter(labelHashSet, includePatches, iter)
{
const polyPatch& pp = bMesh[iter.key()];
patchSize.insert(pp.name(), pp.size());
nFaces += pp.size();
}
Pstream::mapCombineGather(patchSize, plusEqOp<label>());
// Allocate zone/patch for all patches
HashTable<label> compactZoneID(1024);
forAllConstIter(HashTable<label>, patchSize, iter)
{
label sz = compactZoneID.size();
compactZoneID.insert(iter.key(), sz);
}
Pstream::mapCombineScatter(compactZoneID);
// Rework HashTable into labelList just for speed of conversion
labelList patchToCompactZone(bMesh.size(), -1);
forAllConstIter(HashTable<label>, compactZoneID, iter)
{
label patchi = bMesh.findPatchID(iter.key());
if (patchi != -1)
{
patchToCompactZone[patchi] = iter();
}
}
// Collect faces on zones
DynamicList<label> faceLabels(nFaces);
DynamicList<label> compactZones(nFaces);
forAllConstIter(labelHashSet, includePatches, iter)
{
const polyPatch& pp = bMesh[iter.key()];
forAll(pp, i)
{
faceLabels.append(pp.start()+i);
compactZones.append(patchToCompactZone[pp.index()]);
}
}
// Addressing engine for all faces
uindirectPrimitivePatch allBoundary
(
UIndirectList<face>(mesh.faces(), faceLabels),
mesh.points()
);
// Find correspondence to master points
labelList pointToGlobal;
labelList uniqueMeshPoints;
autoPtr<globalIndex> globalNumbers = mesh.globalData().mergePoints
(
allBoundary.meshPoints(),
allBoundary.meshPointMap(),
pointToGlobal,
uniqueMeshPoints
);
// Gather all unique points on master
List<pointField> gatheredPoints(Pstream::nProcs());
gatheredPoints[Pstream::myProcNo()] = pointField
(
mesh.points(),
uniqueMeshPoints
);
Pstream::gatherList(gatheredPoints);
// Gather all faces
List<faceList> gatheredFaces(Pstream::nProcs());
gatheredFaces[Pstream::myProcNo()] = allBoundary.localFaces();
forAll(gatheredFaces[Pstream::myProcNo()], i)
{
inplaceRenumber(pointToGlobal, gatheredFaces[Pstream::myProcNo()][i]);
}
Pstream::gatherList(gatheredFaces);
// Gather all ZoneIDs
List<labelList> gatheredZones(Pstream::nProcs());
gatheredZones[Pstream::myProcNo()] = compactZones.xfer();
Pstream::gatherList(gatheredZones);
// On master combine all points, faces, zones
if (Pstream::master())
{
pointField allPoints = ListListOps::combine<pointField>
(
gatheredPoints,
accessOp<pointField>()
);
gatheredPoints.clear();
faceList allFaces = ListListOps::combine<faceList>
(
gatheredFaces,
accessOp<faceList>()
);
gatheredFaces.clear();
labelList allZones = ListListOps::combine<labelList>
(
gatheredZones,
accessOp<labelList>()
);
gatheredZones.clear();
// Zones
surfZoneIdentifierList surfZones(compactZoneID.size());
forAllConstIter(HashTable<label>, compactZoneID, iter)
{
surfZones[iter()] = surfZoneIdentifier(iter.key(), iter());
Info<< "surfZone " << iter() << " : " << surfZones[iter()].name()
<< endl;
}
UnsortedMeshedSurface<face> unsortedFace
(
xferMove(allPoints),
xferMove(allFaces),
xferMove(allZones),
xferMove(surfZones)
);
MeshedSurface<face> sortedFace(unsortedFace);
fileName globalCasePath
(
runTime.processorCase()
? runTime.path()/".."/outFileName
: runTime.path()/outFileName
);
globalCasePath.clean();
Info<< "Writing merged surface to " << globalCasePath << endl;
sortedFace.write(globalCasePath);
}
}
// Check writing tolerance before doing any serious work
scalar getMergeDistance(const polyMesh& mesh, const scalar mergeTol)
{
const boundBox& meshBb = mesh.bounds();
scalar mergeDist = mergeTol * meshBb.mag();
Info<< nl
<< "Overall mesh bounding box : " << meshBb << nl
<< "Relative tolerance : " << mergeTol << nl
<< "Absolute matching distance : " << mergeDist << nl
<< endl;
// check writing tolerance
if (mesh.time().writeFormat() == IOstream::ASCII)
{
const scalar writeTol = std::pow
(
scalar(10.0),
-scalar(IOstream::defaultPrecision())
);
if (mergeTol < writeTol)
{
FatalErrorInFunction
<< "Your current settings specify ASCII writing with "
<< IOstream::defaultPrecision() << " digits precision." << nl
<< "Your merging tolerance (" << mergeTol
<< ") is finer than this." << nl
<< "Change to binary writeFormat, "
<< "or increase the writePrecision" << endl
<< "or adjust the merge tolerance (mergeTol)."
<< exit(FatalError);
}
}
return mergeDist;
}
void removeZeroSizedPatches(fvMesh& mesh)
{
// Remove any zero-sized ones. Assumes
// - processor patches are already only there if needed
// - all other patches are available on all processors
// - but coupled ones might still be needed, even if zero-size
// (e.g. processorCyclic)
// See also logic in createPatch.
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
labelList oldToNew(pbm.size(), -1);
label newPatchi = 0;
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (!isA<processorPolyPatch>(pp))
{
if
(
isA<coupledPolyPatch>(pp)
|| returnReduce(pp.size(), sumOp<label>())
)
{
// Coupled (and unknown size) or uncoupled and used
oldToNew[patchi] = newPatchi++;
}
}
}
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (isA<processorPolyPatch>(pp))
{
oldToNew[patchi] = newPatchi++;
}
}
const label nKeepPatches = newPatchi;
// Shuffle unused ones to end
if (nKeepPatches != pbm.size())
{
Info<< endl
<< "Removing zero-sized patches:" << endl << incrIndent;
forAll(oldToNew, patchi)
{
if (oldToNew[patchi] == -1)
{
Info<< indent << pbm[patchi].name()
<< " type " << pbm[patchi].type()
<< " at position " << patchi << endl;
oldToNew[patchi] = newPatchi++;
}
}
Info<< decrIndent;
fvMeshTools::reorderPatches(mesh, oldToNew, nKeepPatches, true);
Info<< endl;
}
}
// Write mesh and additional information
void writeMesh
(
const string& msg,
const meshRefinement& meshRefiner,
const meshRefinement::debugType debugLevel,
const meshRefinement::writeType writeLevel
)
{
const fvMesh& mesh = meshRefiner.mesh();
meshRefiner.printMeshInfo(debugLevel, msg);
Info<< "Writing mesh to time " << meshRefiner.timeName() << endl;
processorMeshes::removeFiles(mesh);
if (!debugLevel && !(writeLevel&meshRefinement::WRITELAYERSETS))
{
topoSet::removeFiles(mesh);
}
refinementHistory::removeFiles(mesh);
meshRefiner.write
(
debugLevel,
meshRefinement::writeType(writeLevel | meshRefinement::WRITEMESH),
mesh.time().path()/meshRefiner.timeName()
);
Info<< "Wrote mesh in = "
<< mesh.time().cpuTimeIncrement() << " s." << endl;
}
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "addOverwriteOption.H"
Foam::argList::addBoolOption
(
"checkGeometry",
"check all surface geometry for quality"
);
Foam::argList::addOption
(
"surfaceSimplify",
"boundBox",
"simplify the surface using snappyHexMesh starting from a boundBox"
);
Foam::argList::addOption
(
"patches",
"(patch0 .. patchN)",
"only triangulate selected patches (wildcards supported)"
);
Foam::argList::addOption
(
"outFile",
"file",
"name of the file to save the simplified surface to"
);
#include "addProfilingOption.H"
#include "addDictOption.H"
#include "setRootCase.H"
#include "createTime.H"
runTime.functionObjects().off();
const bool overwrite = args.optionFound("overwrite");
const bool checkGeometry = args.optionFound("checkGeometry");
const bool surfaceSimplify = args.optionFound("surfaceSimplify");
autoPtr<fvMesh> meshPtr;
{
word regionName;
if (args.optionReadIfPresent("region", regionName))
{
Info<< "Create mesh " << regionName << " for time = "
<< runTime.timeName() << nl << endl;
}
else
{
regionName = fvMesh::defaultRegion;
Info<< "Create mesh for time = "
<< runTime.timeName() << nl << endl;
}
meshPtr.set
(
new fvMesh
(
IOobject
(
regionName,
runTime.timeName(),
runTime,
IOobject::MUST_READ
)
)
);
}
fvMesh& mesh = meshPtr();
Info<< "Read mesh in = "
<< runTime.cpuTimeIncrement() << " s" << endl;
// Check patches and faceZones are synchronised
mesh.boundaryMesh().checkParallelSync(true);
meshRefinement::checkCoupledFaceZones(mesh);
// Read meshing dictionary
const word dictName("snappyHexMeshDict");
#include "setSystemMeshDictionaryIO.H"
const IOdictionary meshDict(dictIO);
// all surface geometry
const dictionary& geometryDict = meshDict.subDict("geometry");
// refinement parameters
const dictionary& refineDict = meshDict.subDict("castellatedMeshControls");
// mesh motion and mesh quality parameters
const dictionary& motionDict = meshDict.subDict("meshQualityControls");
// snap-to-surface parameters
const dictionary& snapDict = meshDict.subDict("snapControls");
// layer addition parameters
const dictionary& layerDict = meshDict.subDict("addLayersControls");
// absolute merge distance
const scalar mergeDist = getMergeDistance
(
mesh,
readScalar(meshDict.lookup("mergeTolerance"))
);
const Switch keepPatches(meshDict.lookupOrDefault("keepPatches", false));
// Read decomposePar dictionary
dictionary decomposeDict;
if (Pstream::parRun())
{
fileName decompDictFile;
args.optionReadIfPresent("decomposeParDict", decompDictFile);
// A demand-driven decompositionMethod can have issues finding
// an alternative decomposeParDict location.
IOdictionary* dictPtr = new IOdictionary
(
decompositionModel::selectIO
(
IOobject
(
"decomposeParDict",
runTime.system(),
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
decompDictFile
)
);
// Store it on the object registry, but to be found it must also
// have the expected "decomposeParDict" name.
dictPtr->rename("decomposeParDict");
runTime.store(dictPtr);
decomposeDict = *dictPtr;
}
else
{
decomposeDict.add("method", "none");
decomposeDict.add("numberOfSubdomains", 1);
}
// Debug
// ~~~~~
// Set debug level
meshRefinement::debugType debugLevel = meshRefinement::debugType
(
meshDict.lookupOrDefault<label>
(
"debug",
0
)
);
{
wordList flags;
if (meshDict.readIfPresent("debugFlags", flags))
{
debugLevel = meshRefinement::debugType
(
meshRefinement::readFlags
(
meshRefinement::debugTypeNames,
flags
)
);
}
}
if (debugLevel > 0)
{
meshRefinement::debug = debugLevel;
snappyRefineDriver::debug = debugLevel;
snappySnapDriver::debug = debugLevel;
snappyLayerDriver::debug = debugLevel;
}
// Set file writing level
{
wordList flags;
if (meshDict.readIfPresent("writeFlags", flags))
{
meshRefinement::writeLevel
(
meshRefinement::writeType
(
meshRefinement::readFlags
(
meshRefinement::writeTypeNames,
flags
)
)
);
}
}
// Set output level
{
wordList flags;
if (meshDict.readIfPresent("outputFlags", flags))
{
meshRefinement::outputLevel
(
meshRefinement::outputType
(
meshRefinement::readFlags
(
meshRefinement::outputTypeNames,
flags
)
)
);
}
}
// for the impatient who want to see some output files:
profiling::writeNow();
// Read geometry
// ~~~~~~~~~~~~~
searchableSurfaces allGeometry
(
IOobject
(
"abc", // dummy name
mesh.time().constant(), // instance
//mesh.time().findInstance("triSurface", word::null),// instance
"triSurface", // local
mesh.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE
),
geometryDict,
meshDict.lookupOrDefault("singleRegionName", true)
);
// Read refinement surfaces
// ~~~~~~~~~~~~~~~~~~~~~~~~
autoPtr<refinementSurfaces> surfacesPtr;
Info<< "Reading refinement surfaces." << endl;
if (surfaceSimplify)
{
addProfiling(surfaceSimplify, "snappyHexMesh::surfaceSimplify");
IOdictionary foamyHexMeshDict
(
IOobject
(
"foamyHexMeshDict",
runTime.system(),
runTime,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
const dictionary& conformationDict =
foamyHexMeshDict.subDict("surfaceConformation").subDict
(
"geometryToConformTo"
);
const dictionary& motionDict =
foamyHexMeshDict.subDict("motionControl");
const dictionary& shapeControlDict =
motionDict.subDict("shapeControlFunctions");
// Calculate current ratio of hex cells v.s. wanted cell size
const scalar defaultCellSize =
readScalar(motionDict.lookup("defaultCellSize"));
const scalar initialCellSize = ::pow(meshPtr().V()[0], 1.0/3.0);
//Info<< "Wanted cell size = " << defaultCellSize << endl;
//Info<< "Current cell size = " << initialCellSize << endl;
//Info<< "Fraction = " << initialCellSize/defaultCellSize
// << endl;
surfacesPtr =
createRefinementSurfaces
(
allGeometry,
conformationDict,
shapeControlDict,
refineDict.lookupOrDefault("gapLevelIncrement", 0),
initialCellSize/defaultCellSize
);
profiling::writeNow();
}
else
{
surfacesPtr.set
(
new refinementSurfaces
(
allGeometry,
refineDict.subDict("refinementSurfaces"),
refineDict.lookupOrDefault("gapLevelIncrement", 0)
)
);
Info<< "Read refinement surfaces in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
}
refinementSurfaces& surfaces = surfacesPtr();
// Checking only?
if (checkGeometry)
{
// Extract patchInfo
List<wordList> patchTypes(allGeometry.size());
const PtrList<dictionary>& patchInfo = surfaces.patchInfo();
const labelList& surfaceGeometry = surfaces.surfaces();
forAll(surfaceGeometry, surfi)
{
label geomi = surfaceGeometry[surfi];
const wordList& regNames = allGeometry.regionNames()[geomi];
patchTypes[geomi].setSize(regNames.size());
forAll(regNames, regioni)
{
label globalRegioni = surfaces.globalRegion(surfi, regioni);
if (patchInfo.set(globalRegioni))
{
patchTypes[geomi][regioni] =
word(patchInfo[globalRegioni].lookup("type"));
}
else
{
patchTypes[geomi][regioni] = wallPolyPatch::typeName;
}
}
}
// Write some stats
allGeometry.writeStats(patchTypes, Info);
// Check topology
allGeometry.checkTopology(true);
// Check geometry
allGeometry.checkGeometry
(
100.0, // max size ratio
1e-9, // intersection tolerance
autoPtr<writer<scalar>>(new vtkSetWriter<scalar>()),
0.01, // min triangle quality
true
);
return 0;
}
// Read refinement shells
// ~~~~~~~~~~~~~~~~~~~~~~
Info<< "Reading refinement shells." << endl;
shellSurfaces shells
(
allGeometry,
refineDict.subDict("refinementRegions")
);
Info<< "Read refinement shells in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
Info<< "Setting refinement level of surface to be consistent"
<< " with shells." << endl;
surfaces.setMinLevelFields(shells);
Info<< "Checked shell refinement in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
// Optionally read limit shells
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const dictionary limitDict(refineDict.subOrEmptyDict("limitRegions"));
if (!limitDict.empty())
{
Info<< "Reading limit shells." << endl;
}
shellSurfaces limitShells(allGeometry, limitDict);
if (!limitDict.empty())
{
Info<< "Read refinement shells in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
}
// Read feature meshes
// ~~~~~~~~~~~~~~~~~~~
Info<< "Reading features." << endl;
refinementFeatures features
(
mesh,
refineDict.lookup("features")
);
Info<< "Read features in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
// Refinement engine
// ~~~~~~~~~~~~~~~~~
Info<< nl
<< "Determining initial surface intersections" << nl
<< "-----------------------------------------" << nl
<< endl;
// Main refinement engine
meshRefinement meshRefiner
(
mesh,
mergeDist, // tolerance used in sorting coordinates
overwrite, // overwrite mesh files?
surfaces, // for surface intersection refinement
features, // for feature edges/point based refinement
shells, // for volume (inside/outside) refinement
limitShells // limit of volume refinement
);
Info<< "Calculated surface intersections in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
// Some stats
meshRefiner.printMeshInfo(debugLevel, "Initial mesh");
meshRefiner.write
(
meshRefinement::debugType(debugLevel&meshRefinement::OBJINTERSECTIONS),
meshRefinement::writeType(0),
mesh.time().path()/meshRefiner.timeName()
);
// Refinement parameters
const refinementParameters refineParams(refineDict);
// Snap parameters
const snapParameters snapParams(snapDict);
// Add all the cellZones and faceZones
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// 1. cellZones relating to surface (faceZones added later)
const labelList namedSurfaces
(
surfaceZonesInfo::getNamedSurfaces(surfaces.surfZones())
);
labelList surfaceToCellZone = surfaceZonesInfo::addCellZonesToMesh
(
surfaces.surfZones(),
namedSurfaces,
mesh
);
// 2. cellZones relating to locations
refineParams.addCellZonesToMesh(mesh);
// Add all the surface regions as patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//- Global surface region to patch (non faceZone surface) or patches
// (faceZone surfaces)
labelList globalToMasterPatch;
labelList globalToSlavePatch;
{
Info<< nl
<< "Adding patches for surface regions" << nl
<< "----------------------------------" << nl
<< endl;
// From global region number to mesh patch.
globalToMasterPatch.setSize(surfaces.nRegions(), -1);
globalToSlavePatch.setSize(surfaces.nRegions(), -1);
Info<< setf(ios_base::left)
<< setw(6) << "Patch"
<< setw(20) << "Type"
<< setw(30) << "Region" << nl
<< setw(6) << "-----"
<< setw(20) << "----"
<< setw(30) << "------" << endl;
const labelList& surfaceGeometry = surfaces.surfaces();
const PtrList<dictionary>& surfacePatchInfo = surfaces.patchInfo();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
forAll(surfaceGeometry, surfi)
{
label geomi = surfaceGeometry[surfi];
const wordList& regNames = allGeometry.regionNames()[geomi];
Info<< surfaces.names()[surfi] << ':' << nl << nl;
const word& fzName = surfaces.surfZones()[surfi].faceZoneName();
if (fzName.empty())
{
// 'Normal' surface
forAll(regNames, i)
{
label globalRegioni = surfaces.globalRegion(surfi, i);
label patchi;
if (surfacePatchInfo.set(globalRegioni))
{
patchi = meshRefiner.addMeshedPatch
(
regNames[i],
surfacePatchInfo[globalRegioni]
);
}
else
{
dictionary patchInfo;
patchInfo.set("type", wallPolyPatch::typeName);
patchi = meshRefiner.addMeshedPatch
(
regNames[i],
patchInfo
);
}
Info<< setf(ios_base::left)
<< setw(6) << patchi
<< setw(20) << pbm[patchi].type()
<< setw(30) << regNames[i] << nl;
globalToMasterPatch[globalRegioni] = patchi;
globalToSlavePatch[globalRegioni] = patchi;
}
}
else
{
// Zoned surface
forAll(regNames, i)
{
label globalRegioni = surfaces.globalRegion(surfi, i);
// Add master side patch
{
label patchi;
if (surfacePatchInfo.set(globalRegioni))
{
patchi = meshRefiner.addMeshedPatch
(
regNames[i],
surfacePatchInfo[globalRegioni]
);
}
else
{
dictionary patchInfo;
patchInfo.set("type", wallPolyPatch::typeName);
patchi = meshRefiner.addMeshedPatch
(
regNames[i],
patchInfo
);
}
Info<< setf(ios_base::left)
<< setw(6) << patchi
<< setw(20) << pbm[patchi].type()
<< setw(30) << regNames[i] << nl;
globalToMasterPatch[globalRegioni] = patchi;
}
// Add slave side patch
{
const word slaveName = regNames[i] + "_slave";
label patchi;
if (surfacePatchInfo.set(globalRegioni))
{
patchi = meshRefiner.addMeshedPatch
(
slaveName,
surfacePatchInfo[globalRegioni]
);
}
else
{
dictionary patchInfo;
patchInfo.set("type", wallPolyPatch::typeName);
patchi = meshRefiner.addMeshedPatch
(
slaveName,
patchInfo
);
}
Info<< setf(ios_base::left)
<< setw(6) << patchi
<< setw(20) << pbm[patchi].type()
<< setw(30) << slaveName << nl;
globalToSlavePatch[globalRegioni] = patchi;
}
}
// For now: have single faceZone per surface. Use first
// region in surface for patch for zoneing
if (regNames.size())
{
label globalRegioni = surfaces.globalRegion(surfi, 0);
meshRefiner.addFaceZone
(
fzName,
pbm[globalToMasterPatch[globalRegioni]].name(),
pbm[globalToSlavePatch[globalRegioni]].name(),
surfaces.surfZones()[surfi].faceType()
);
}
}
Info<< nl;
}
Info<< "Added patches in = "
<< mesh.time().cpuTimeIncrement() << " s" << nl << endl;
}
// Add all information for all the remaining faceZones
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HashTable<Pair<word>> faceZoneToPatches;
forAll(mesh.faceZones(), zonei)
{
const word& fzName = mesh.faceZones()[zonei].name();
label mpI, spI;
surfaceZonesInfo::faceZoneType fzType;
bool hasInfo = meshRefiner.getFaceZoneInfo(fzName, mpI, spI, fzType);
if (!hasInfo)
{
// faceZone does not originate from a surface but presumably
// from a cellZone pair instead
string::size_type i = fzName.find("_to_");
if (i != string::npos)
{
word cz0 = fzName.substr(0, i);
word cz1 = fzName.substr(i+4, fzName.size()-i+4);
word slaveName(cz1 + "_to_" + cz0);
faceZoneToPatches.insert(fzName, Pair<word>(fzName, slaveName));
}
else
{
// Add as fzName + fzName_slave
const word slaveName = fzName + "_slave";
faceZoneToPatches.insert(fzName, Pair<word>(fzName, slaveName));
}
}
}
if (faceZoneToPatches.size())
{
snappyRefineDriver::addFaceZones
(
meshRefiner,
refineParams,
faceZoneToPatches
);
}
// Re-do intersections on meshed boundaries since they use an extrapolated
// other side
{
const labelList adaptPatchIDs(meshRefiner.meshedPatches());
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
label nFaces = 0;
forAll(adaptPatchIDs, i)
{
nFaces += pbm[adaptPatchIDs[i]].size();
}
labelList faceLabels(nFaces);
nFaces = 0;
forAll(adaptPatchIDs, i)
{
const polyPatch& pp = pbm[adaptPatchIDs[i]];
forAll(pp, i)
{
faceLabels[nFaces++] = pp.start()+i;
}
}
meshRefiner.updateIntersections(faceLabels);
}
// Parallel
// ~~~~~~~~
// Construct decomposition engine. Note: cannot use decompositionModel
// MeshObject since we're clearing out the mesh inside the mesh generation.
autoPtr<decompositionMethod> decomposerPtr
(
decompositionMethod::New
(
decomposeDict
)
);
decompositionMethod& decomposer = decomposerPtr();
if (Pstream::parRun() && !decomposer.parallelAware())
{
FatalErrorInFunction
<< "You have selected decomposition method "
<< decomposer.typeName
<< " which is not parallel aware." << endl
<< "Please select one that is (hierarchical, ptscotch)"
<< exit(FatalError);
}
// Mesh distribution engine (uses tolerance to reconstruct meshes)
fvMeshDistribute distributor(mesh, mergeDist);
// Now do the real work -refinement -snapping -layers
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const Switch wantRefine(meshDict.lookup("castellatedMesh"));
const Switch wantSnap(meshDict.lookup("snap"));
const Switch wantLayers(meshDict.lookup("addLayers"));
const Switch mergePatchFaces
(
meshDict.lookupOrDefault("mergePatchFaces", true)
);
if (!mergePatchFaces)
{
Info<< "Not merging patch-faces of cell to preserve"
<< " (split)hex cell shape."
<< nl << endl;
}
if (wantRefine)
{
cpuTime timer;
snappyRefineDriver refineDriver
(
meshRefiner,
decomposer,
distributor,
globalToMasterPatch,
globalToSlavePatch
);
if (!overwrite && !debugLevel)
{
const_cast<Time&>(mesh.time())++;
}
refineDriver.doRefine
(
refineDict,
refineParams,
snapParams,
refineParams.handleSnapProblems(),
mergePatchFaces, // merge co-planar faces
motionDict
);
// Remove zero sized patches originating from faceZones
if (!keepPatches && !wantSnap && !wantLayers)
{
fvMeshTools::removeEmptyPatches(mesh, true);
}
writeMesh
(
"Refined mesh",
meshRefiner,
debugLevel,
meshRefinement::writeLevel()
);
Info<< "Mesh refined in = "
<< timer.cpuTimeIncrement() << " s." << endl;
profiling::writeNow();
}
if (wantSnap)
{
cpuTime timer;
snappySnapDriver snapDriver
(
meshRefiner,
globalToMasterPatch,
globalToSlavePatch
);
if (!overwrite && !debugLevel)
{
const_cast<Time&>(mesh.time())++;
}
// Use the resolveFeatureAngle from the refinement parameters
scalar curvature = refineParams.curvature();
scalar planarAngle = refineParams.planarAngle();
snapDriver.doSnap
(
snapDict,
motionDict,
mergePatchFaces,
curvature,
planarAngle,
snapParams
);
// Remove zero sized patches originating from faceZones
if (!keepPatches && !wantLayers)
{
fvMeshTools::removeEmptyPatches(mesh, true);
}
writeMesh
(
"Snapped mesh",
meshRefiner,
debugLevel,
meshRefinement::writeLevel()
);
Info<< "Mesh snapped in = "
<< timer.cpuTimeIncrement() << " s." << endl;
profiling::writeNow();
}
if (wantLayers)
{
cpuTime timer;
// Layer addition parameters
const layerParameters layerParams(layerDict, mesh.boundaryMesh());
snappyLayerDriver layerDriver
(
meshRefiner,
globalToMasterPatch,
globalToSlavePatch
);
// Use the maxLocalCells from the refinement parameters
bool preBalance = returnReduce
(
(mesh.nCells() >= refineParams.maxLocalCells()),
orOp<bool>()
);
if (!overwrite && !debugLevel)
{
const_cast<Time&>(mesh.time())++;
}
layerDriver.doLayers
(
layerDict,
motionDict,
layerParams,
mergePatchFaces,
preBalance,
decomposer,
distributor
);
// Remove zero sized patches originating from faceZones
if (!keepPatches)
{
fvMeshTools::removeEmptyPatches(mesh, true);
}
writeMesh
(
"Layer mesh",
meshRefiner,
debugLevel,
meshRefinement::writeLevel()
);
Info<< "Layers added in = "
<< timer.cpuTimeIncrement() << " s." << endl;
profiling::writeNow();
}
{
addProfiling(checkMesh, "snappyHexMesh::checkMesh");
// Check final mesh
Info<< "Checking final mesh ..." << endl;
faceSet wrongFaces(mesh, "wrongFaces", mesh.nFaces()/100);
motionSmoother::checkMesh(false, mesh, motionDict, wrongFaces);
const label nErrors = returnReduce
(
wrongFaces.size(),
sumOp<label>()
);
if (nErrors > 0)
{
Info<< "Finished meshing with " << nErrors << " illegal faces"
<< " (concave, zero area or negative cell pyramid volume)"
<< endl;
wrongFaces.write();
}
else
{
Info<< "Finished meshing without any errors" << endl;
}
profiling::writeNow();
}
if (surfaceSimplify)
{
addProfiling(surfaceSimplify, "snappyHexMesh::surfaceSimplify");
const polyBoundaryMesh& bMesh = mesh.boundaryMesh();
labelHashSet includePatches(bMesh.size());
if (args.optionFound("patches"))
{
includePatches = bMesh.patchSet
(
wordReList(args.optionLookup("patches")())
);
}
else
{
forAll(bMesh, patchi)
{
const polyPatch& patch = bMesh[patchi];
if (!isA<processorPolyPatch>(patch))
{
includePatches.insert(patchi);
}
}
}
fileName outFileName
(
args.optionLookupOrDefault<fileName>
(
"outFile",
"constant/triSurface/simplifiedSurface.stl"
)
);
extractSurface
(
mesh,
runTime,
includePatches,
outFileName
);
pointIOField cellCentres
(
IOobject
(
"internalCellCentres",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh.cellCentres()
);
cellCentres.write();
}
profiling::writeNow();
Info<< "Finished meshing in = "
<< runTime.elapsedCpuTime() << " s." << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //