openfoam/src/OpenFOAM/fields/GeometricFields/GeometricField/GeometricBoundaryField.C
Mark Olesen 52b530fb82 COMP: missing tmp dereference (fixes #3277)
- only affected v2406
2024-12-10 12:26:46 +01:00

1068 lines
27 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017,2022 OpenFOAM Foundation
Copyright (C) 2016-2024 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "GeometricBoundaryField.H"
#include "globalMeshData.H"
#include "cyclicPolyPatch.H"
#include "emptyPolyPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type, template<class> class PatchField, class GeoMesh>
template<class CheckPatchFieldType>
bool Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::checkConsistency
(
const scalar tol,
const bool doExit
) const
{
if (!this->size())
{
return true;
}
if (debug&2)
{
const auto& pfld0 = this->operator[](0);
PoutInFunction
<< " Checking boundary consistency for field "
<< pfld0.internalField().name()
<< endl;
}
auto& bfld = const_cast<GeometricBoundaryField<Type, PatchField, GeoMesh>&>
(
*this
);
// Store old value
List<Field<Type>> oldBfld(this->size());
boolList oldUpdated(this->size());
//Note: areaFields (finiteArea) do not have manipulatedMatrix() flag. TBD.
//boolList oldManipulated(this->size());
for (auto& pfld : bfld)
{
if (isA<CheckPatchFieldType>(pfld))
{
const label patchi = pfld.patch().index();
oldUpdated[patchi] = pfld.updated();
oldBfld[patchi] = pfld;
//oldManipulated[patchi] = pfld.manipulatedMatrix();
}
}
// Re-evaluate
{
const label startOfRequests = UPstream::nRequests();
for (auto& pfld : bfld)
{
if (isA<CheckPatchFieldType>(pfld))
{
pfld.initEvaluate(UPstream::commsTypes::nonBlocking);
}
}
// Wait for outstanding requests (non-blocking)
UPstream::waitRequests(startOfRequests);
for (auto& pfld : bfld)
{
if (isA<CheckPatchFieldType>(pfld))
{
pfld.evaluate(UPstream::commsTypes::nonBlocking);
}
}
}
// Check
bool ok = true;
for (auto& pfld : bfld)
{
if (isA<CheckPatchFieldType>(pfld))
{
const label patchi = pfld.patch().index();
const auto& oldPfld = oldBfld[patchi];
forAll(pfld, facei)
{
if (mag(pfld[facei]-oldPfld[facei]) > tol)
{
ok = false;
break;
}
}
if (!ok)
{
if (doExit)
{
FatalErrorInFunction << "Field "
<< pfld.internalField().name()
<< " is not evaluated?"
<< " On patch " << pfld.patch().name()
<< " type " << pfld.type()
<< " : average of field = "
<< average(oldPfld)
<< ". Average of evaluated field = "
<< average(pfld)
<< ". Difference:" << average(pfld-oldPfld)
<< ". Tolerance:" << tol
<< exit(FatalError);
}
else
{
WarningInFunction << "Field "
<< pfld.internalField().name()
<< " is not evaluated?"
<< " On patch " << pfld.patch().name()
<< " type " << pfld.type()
<< " : average of field = "
<< average(oldPfld)
<< ". Average of evaluated field = "
<< average(pfld)
<< ". Difference:" << average(pfld-oldPfld)
<< ". Tolerance:" << tol
<< endl;
// Skip other patches
break;
}
}
}
}
// Restore bfld, updated
for (auto& pfld : bfld)
{
if (isA<CheckPatchFieldType>(pfld))
{
const label patchi = pfld.patch().index();
pfld.setUpdated(oldUpdated[patchi]);
Field<Type>& vals = pfld;
vals = std::move(oldBfld[patchi]);
//pfld.setManipulated(oldManipulated[patchi]);
}
}
if (debug&2)
{
const auto& pfld0 = this->operator[](0);
PoutInFunction
<< " Result of checking for field "
<< pfld0.internalField().name() << " : " << ok << endl;
}
return ok;
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::readField
(
const Internal& iField,
const dictionary& dict
)
{
// DebugInFunction << nl;
// Clear the boundary field if already initialised
this->clear();
this->resize(bmesh_.size());
label nUnset = this->size();
// 1. Handle explicit patch names. Note that there can be only one explicit
// patch name since is key of dictionary.
for (const entry& dEntry : dict)
{
const auto* subdict = dEntry.dictPtr();
if (subdict && dEntry.keyword().isLiteral())
{
const label patchi = bmesh_.findPatchID(dEntry.keyword());
if (patchi != -1)
{
this->set
(
patchi,
PatchField<Type>::New
(
bmesh_[patchi],
iField,
*subdict
)
);
--nUnset;
}
}
}
if (nUnset == 0)
{
return;
}
// 2. Patch-groups. (using non-wild card entries of dictionaries)
// (patchnames already matched above)
// Note: in reverse order of entries in the dictionary (last
// patchGroups wins). This is so it is consistent with dictionary wildcard
// behaviour
for (auto iter = dict.crbegin(); iter != dict.crend(); ++iter)
{
const entry& dEntry = *iter;
const auto* subdict = dEntry.dictPtr();
if (subdict && dEntry.keyword().isLiteral())
{
const labelList patchIds =
bmesh_.indices(dEntry.keyword(), true); // use patchGroups
for (const label patchi : patchIds)
{
if (!this->set(patchi))
{
this->set
(
patchi,
PatchField<Type>::New
(
bmesh_[patchi],
iField,
*subdict
)
);
}
}
}
}
// 3. Wildcard patch overrides
forAll(bmesh_, patchi)
{
if (!this->set(patchi))
{
if (bmesh_[patchi].type() == emptyPolyPatch::typeName)
{
this->set
(
patchi,
PatchField<Type>::New
(
emptyPolyPatch::typeName,
bmesh_[patchi],
iField
)
);
}
else
{
const auto* subdict = dict.findDict(bmesh_[patchi].name());
if (subdict)
{
this->set
(
patchi,
PatchField<Type>::New
(
bmesh_[patchi],
iField,
*subdict
)
);
}
}
}
}
// Check for any unset patches
forAll(bmesh_, patchi)
{
if (!this->set(patchi))
{
if (bmesh_[patchi].type() == cyclicPolyPatch::typeName)
{
FatalIOErrorInFunction(dict)
<< "Cannot find patchField entry for cyclic "
<< bmesh_[patchi].name() << endl
<< "Is your field uptodate with split cyclics?" << endl
<< "Run foamUpgradeCyclics to convert mesh and fields"
<< " to split cyclics." << exit(FatalIOError);
}
else
{
FatalIOErrorInFunction(dict)
<< "Cannot find patchField entry for "
<< bmesh_[patchi].name() << exit(FatalIOError);
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const BoundaryMesh& bmesh
)
:
FieldField<PatchField, Type>(bmesh.size()),
bmesh_(bmesh)
{}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const BoundaryMesh& bmesh,
const Internal& iField,
const word& patchFieldType
)
:
FieldField<PatchField, Type>(bmesh.size()),
bmesh_(bmesh)
{
// DebugInFunction << nl;
forAll(bmesh_, patchi)
{
this->set
(
patchi,
PatchField<Type>::New
(
patchFieldType,
bmesh_[patchi],
iField
)
);
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const BoundaryMesh& bmesh,
const Internal& iField,
const wordList& patchFieldTypes,
const wordList& constraintTypes
)
:
FieldField<PatchField, Type>(bmesh.size()),
bmesh_(bmesh)
{
// DebugInFunction << nl;
if
(
patchFieldTypes.size() != this->size()
|| (constraintTypes.size() && (constraintTypes.size() != this->size()))
)
{
FatalErrorInFunction
<< "Incorrect number of patch type specifications given" << nl
<< " Number of patches in mesh = " << bmesh.size()
<< " number of patch type specifications = "
<< patchFieldTypes.size()
<< abort(FatalError);
}
if (constraintTypes.size())
{
forAll(bmesh_, patchi)
{
this->set
(
patchi,
PatchField<Type>::New
(
patchFieldTypes[patchi],
constraintTypes[patchi],
bmesh_[patchi],
iField
)
);
}
}
else
{
forAll(bmesh_, patchi)
{
this->set
(
patchi,
PatchField<Type>::New
(
patchFieldTypes[patchi],
bmesh_[patchi],
iField
)
);
}
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const BoundaryMesh& bmesh,
const Internal& iField,
const PtrList<PatchField<Type>>& ptfl
)
:
FieldField<PatchField, Type>(bmesh.size()),
bmesh_(bmesh)
{
// DebugInFunction << nl;
forAll(bmesh_, patchi)
{
this->set(patchi, ptfl[patchi].clone(iField));
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const Internal& iField,
const GeometricBoundaryField<Type, PatchField, GeoMesh>& btf
)
:
FieldField<PatchField, Type>(btf.size()),
bmesh_(btf.bmesh_)
{
// DebugInFunction << nl;
forAll(bmesh_, patchi)
{
this->set(patchi, btf[patchi].clone(iField));
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const Internal& iField,
const GeometricBoundaryField<Type, PatchField, GeoMesh>& btf,
const labelList& patchIDs,
const word& patchFieldType
)
:
FieldField<PatchField, Type>(btf.size()),
bmesh_(btf.bmesh_)
{
// DebugInFunction << nl;
for (const label patchi : patchIDs)
{
this->set
(
patchi,
PatchField<Type>::New
(
patchFieldType,
bmesh_[patchi],
iField
)
);
}
forAll(bmesh_, patchi)
{
if (!this->set(patchi))
{
this->set(patchi, btf[patchi].clone(iField));
}
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const GeometricBoundaryField<Type, PatchField, GeoMesh>& btf
)
:
FieldField<PatchField, Type>(btf),
bmesh_(btf.bmesh_)
{}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::GeometricBoundaryField
(
const BoundaryMesh& bmesh,
const Internal& iField,
const dictionary& dict
)
:
FieldField<PatchField, Type>(bmesh.size()),
bmesh_(bmesh)
{
readField(iField, dict);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::updateCoeffs()
{
// DebugInFunction << nl;
for (auto& pfld : *this)
{
pfld.updateCoeffs();
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::evaluate
(
const UPstream::commsTypes commsType
)
{
if
(
commsType == UPstream::commsTypes::buffered
|| commsType == UPstream::commsTypes::nonBlocking
)
{
const label startOfRequests = UPstream::nRequests();
for (auto& pfld : *this)
{
pfld.initEvaluate(commsType);
}
// Wait for outstanding requests (non-blocking)
UPstream::waitRequests(startOfRequests);
for (auto& pfld : *this)
{
pfld.evaluate(commsType);
}
}
else if (commsType == UPstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule =
bmesh_.mesh().globalData().patchSchedule();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
auto& pfld = (*this)[patchi];
if (schedEval.init)
{
pfld.initEvaluate(commsType);
}
else
{
pfld.evaluate(commsType);
}
}
}
else
{
FatalErrorInFunction
<< "Unsupported communications type " << int(commsType) << nl
<< exit(FatalError);
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
template<class UnaryPredicate>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::evaluate_if
(
const UnaryPredicate& pred,
const UPstream::commsTypes commsType
)
{
if
(
commsType == UPstream::commsTypes::buffered
|| commsType == UPstream::commsTypes::nonBlocking
)
{
const label startOfRequests = UPstream::nRequests();
for (auto& pfld : *this)
{
if (pred(pfld))
{
pfld.initEvaluate(commsType);
}
}
// Wait for outstanding requests (non-blocking)
UPstream::waitRequests(startOfRequests);
for (auto& pfld : *this)
{
if (pred(pfld))
{
pfld.evaluate(commsType);
}
}
}
else if (commsType == UPstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule =
bmesh_.mesh().globalData().patchSchedule();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
auto& pfld = (*this)[patchi];
if (pred(pfld))
{
if (schedEval.init)
{
pfld.initEvaluate(commsType);
}
else
{
pfld.evaluate(commsType);
}
}
}
}
else
{
FatalErrorInFunction
<< "Unsupported communications type " << int(commsType) << nl
<< exit(FatalError);
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::evaluateSelected
(
const labelUList& patchIDs
)
{
const label startOfRequests = UPstream::nRequests();
for (const label patchi : patchIDs)
{
auto& pfld = (*this)[patchi];
DebugInfo<< "Updating " << pfld.patch().name() << endl;
pfld.initEvaluate(UPstream::commsTypes::nonBlocking);
}
// Wait for outstanding requests (non-blocking)
UPstream::waitRequests(startOfRequests);
for (const label patchi : patchIDs)
{
auto& pfld = (*this)[patchi];
pfld.evaluate(UPstream::commsTypes::nonBlocking);
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::evaluateLocal
(
const UPstream::commsTypes commsType
)
{
// DebugInFunction << nl;
if (!localConsistency)
{
return;
}
if
(
commsType == UPstream::commsTypes::buffered
|| commsType == UPstream::commsTypes::nonBlocking
)
{
const label startOfRequests = UPstream::nRequests();
for (auto& pfld : *this)
{
pfld.initEvaluateLocal(commsType);
}
// Wait for outstanding requests (non-blocking)
UPstream::waitRequests(startOfRequests);
for (auto& pfld : *this)
{
pfld.evaluateLocal(commsType);
}
}
else if (commsType == UPstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule =
bmesh_.mesh().globalData().patchSchedule();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
auto& pfld = (*this)[patchi];
if (schedEval.init)
{
pfld.initEvaluateLocal(commsType);
}
else
{
pfld.evaluateLocal(commsType);
}
}
}
else
{
FatalErrorInFunction
<< "Unsupported communications type " << int(commsType) << nl
<< exit(FatalError);
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
template<class CoupledPatchType>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::evaluateCoupled
(
const UPstream::commsTypes commsType
)
{
// Alternative (C++14)
//
// this->evaluate_if
// (
// [](const auto& pfld) -> bool
// {
// const auto* cpp = isA<CoupledPatchType>(pfld.patch());
// return (cpp && cpp->coupled());
// },
// commsType
// );
// DebugInFunction << nl;
if
(
commsType == UPstream::commsTypes::buffered
|| commsType == UPstream::commsTypes::nonBlocking
)
{
const label startOfRequests = UPstream::nRequests();
for (auto& pfld : *this)
{
const auto* cpp = isA<CoupledPatchType>(pfld.patch());
if (cpp && cpp->coupled())
{
pfld.initEvaluate(commsType);
}
}
// Wait for outstanding requests (non-blocking)
UPstream::waitRequests(startOfRequests);
for (auto& pfld : *this)
{
const auto* cpp = isA<CoupledPatchType>(pfld.patch());
if (cpp && cpp->coupled())
{
pfld.evaluate(commsType);
}
}
}
else if (commsType == UPstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule =
bmesh_.mesh().globalData().patchSchedule();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
auto& pfld = (*this)[patchi];
const auto* cpp = isA<CoupledPatchType>(pfld.patch());
if (cpp && cpp->coupled())
{
if (schedEval.init)
{
pfld.initEvaluate(commsType);
}
else
{
pfld.evaluate(commsType);
}
}
}
}
else
{
FatalErrorInFunction
<< "Unsupported communications type " << int(commsType) << nl
<< exit(FatalError);
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::wordList
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::types() const
{
const FieldField<PatchField, Type>& pff = *this;
wordList list(pff.size());
forAll(pff, patchi)
{
list[patchi] = pff[patchi].type();
}
return list;
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::tmp<Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::
boundaryInternalField() const
{
auto tresult = tmp<GeometricBoundaryField<Type, PatchField, GeoMesh>>::New
(
DimensionedField<Type, GeoMesh>::null(),
*this
);
auto& result = tresult.ref();
forAll(result, patchi)
{
result[patchi] == this->operator[](patchi).patchInternalField();
}
return tresult;
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::LduInterfaceFieldPtrsList<Type>
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::interfaces() const
{
LduInterfaceFieldPtrsList<Type> list(this->size());
forAll(list, patchi)
{
list.set
(
patchi,
isA<LduInterfaceField<Type>>(this->operator[](patchi))
);
}
return list;
}
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::lduInterfaceFieldPtrsList
Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::
scalarInterfaces() const
{
lduInterfaceFieldPtrsList list(this->size());
forAll(list, patchi)
{
list.set
(
patchi,
isA<lduInterfaceField>(this->operator[](patchi))
);
}
return list;
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::writeEntry
(
const word& keyword,
Ostream& os
) const
{
os.beginBlock(keyword);
this->writeEntries(os);
os.endBlock();
os.check(FUNCTION_NAME);
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::writeEntries
(
Ostream& os
) const
{
for (const auto& pfld : *this)
{
os.beginBlock(pfld.patch().name());
os << pfld;
os.endBlock();
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
bool Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::check
(
) const
{
// Dummy op - template specialisations provide logic (usually call
// to checkConsistency)
return true;
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::operator=
(
const GeometricBoundaryField<Type, PatchField, GeoMesh>& bf
)
{
FieldField<PatchField, Type>::operator=(bf);
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::operator=
(
const FieldField<PatchField, Type>& bf
)
{
FieldField<PatchField, Type>::operator=(bf);
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::operator=
(
const Type& val
)
{
FieldField<PatchField, Type>::operator=(val);
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::operator==
(
const GeometricBoundaryField<Type, PatchField, GeoMesh>& bf
)
{
forAll(*this, patchi)
{
this->operator[](patchi) == bf[patchi];
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::operator==
(
const FieldField<PatchField, Type>& bf
)
{
forAll(*this, patchi)
{
this->operator[](patchi) == bf[patchi];
}
}
template<class Type, template<class> class PatchField, class GeoMesh>
void Foam::GeometricBoundaryField<Type, PatchField, GeoMesh>::operator==
(
const Type& val
)
{
forAll(*this, patchi)
{
this->operator[](patchi) == val;
}
}
// * * * * * * * * * * * * * * * Friend Operators * * * * * * * * * * * * * //
template<class Type, template<class> class PatchField, class GeoMesh>
Foam::Ostream& Foam::operator<<
(
Ostream& os,
const GeometricBoundaryField<Type, PatchField, GeoMesh>& bf
)
{
os << static_cast<const FieldField<PatchField, Type>&>(bf);
return os;
}
// ************************************************************************* //