openfoam/applications/utilities/mesh/conversion/foamMeshToFluent/fluentFvMesh.C
Mark Olesen bed1305d96 BUG: extraneous brackets after Fluent cell types (fixes #1872)
ENH: limit output to 25 cell types per line for readability

- makes it easier to trace potential format errors etc

STYLE: downgrade warning about polyhedrals to a simple info message

- can assume that polyhedral support is widespread enough to not
  warrant a warning.
2020-10-29 11:21:39 +01:00

323 lines
8.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include <fstream>
#include <iostream>
using std::ios;
#include "Time.H"
#include "fluentFvMesh.H"
#include "primitiveMesh.H"
#include "wallFvPatch.H"
#include "symmetryPlaneFvPatch.H"
#include "symmetryFvPatch.H"
#include "cellModel.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::fluentFvMesh::fluentFvMesh(const IOobject& io)
:
fvMesh(io)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::fluentFvMesh::writeFluentMesh() const
{
// Make a directory called fluentInterface in the case
mkDir(time().rootPath()/time().caseName()/"fluentInterface");
// Open a file for the mesh
std::ofstream fluentMeshFile
(
time().rootPath()
/ time().caseName()
/ "fluentInterface"
/ time().caseName() + ".msh"
);
Info<< "Writing Fluent Mesh" << endl;
fluentMeshFile
<< "(0 \"OpenFOAM to Fluent Mesh File\")" << nl << nl
<< "(0 \"Dimension:\")" << nl
<< "(2 3)" << nl << nl
<< "(0 \"Grid dimensions:\")" << nl;
// Writing number of points
fluentMeshFile
<< "(10 (0 1 ";
// Writing hex
fluentMeshFile.setf(ios::hex, ios::basefield);
fluentMeshFile
<< nPoints() << " 0 3))" << std::endl;
// Writing number of cells
fluentMeshFile
<< "(12 (0 1 "
<< nCells() << " 0 0))" << std::endl;
// Writing number of faces
label nFcs = nFaces();
fluentMeshFile
<< "(13 (0 1 ";
// Still writing hex
fluentMeshFile
<< nFcs << " 0 0))" << std::endl << std::endl;
// Return to dec
fluentMeshFile.setf(ios::dec, ios::basefield);
// Writing points
fluentMeshFile
<< "(10 (1 1 ";
fluentMeshFile.setf(ios::hex, ios::basefield);
fluentMeshFile
<< nPoints() << " 1 3)"
<< std::endl << "(" << std::endl;
fluentMeshFile.precision(10);
fluentMeshFile.setf(ios::scientific);
const pointField& p = points();
forAll(p, pointi)
{
fluentMeshFile
<< " "
<< p[pointi].x() << " "
<< p[pointi].y()
<< " " << p[pointi].z() << std::endl;
}
fluentMeshFile
<< "))" << std::endl << std::endl;
const labelUList& own = owner();
const labelUList& nei = neighbour();
const faceList& fcs = faces();
// Writing (mixed) internal faces
fluentMeshFile
<< "(13 (2 1 "
<< own.size() << " 2 0)" << std::endl << "(" << std::endl;
forAll(own, facei)
{
const labelList& l = fcs[facei];
fluentMeshFile << " ";
fluentMeshFile << l.size() << " ";
forAll(l, lI)
{
fluentMeshFile << l[lI] + 1 << " ";
}
fluentMeshFile << nei[facei] + 1 << " ";
fluentMeshFile << own[facei] + 1 << std::endl;
}
fluentMeshFile << "))" << std::endl;
label nWrittenFaces = own.size();
// Writing boundary faces
forAll(boundary(), patchi)
{
const faceUList& patchFaces = boundaryMesh()[patchi];
const labelList& patchFaceCells =
boundaryMesh()[patchi].faceCells();
// The face group will be offset by 10 from the patch label
// Write header
fluentMeshFile
<< "(13 (" << patchi + 10 << " " << nWrittenFaces + 1
<< " " << nWrittenFaces + patchFaces.size() << " ";
nWrittenFaces += patchFaces.size();
// Write patch type
if (isA<wallFvPatch>(boundary()[patchi]))
{
fluentMeshFile << 3;
}
else if
(
isA<symmetryPlaneFvPatch>(boundary()[patchi])
|| isA<symmetryFvPatch>(boundary()[patchi])
)
{
fluentMeshFile << 7;
}
else
{
fluentMeshFile << 4;
}
fluentMeshFile
<<" 0)" << std::endl << "(" << std::endl;
forAll(patchFaces, facei)
{
const labelList& l = patchFaces[facei];
fluentMeshFile << " ";
fluentMeshFile << l.size() << " ";
// Note: In Fluent, all boundary faces point inwards, which is
// opposite from the OpenFOAM convention.
// Turn them around on printout
forAllReverse(l, lI)
{
fluentMeshFile << l[lI] + 1 << " ";
}
fluentMeshFile << patchFaceCells[facei] + 1 << " 0" << std::endl;
}
fluentMeshFile << "))" << std::endl;
}
// Writing cells
fluentMeshFile
<< "(12 (1 1 " << nCells() << " 1 0)" << nl
<< '(';
const cellModel& hex = cellModel::ref(cellModel::HEX);
const cellModel& prism = cellModel::ref(cellModel::PRISM);
const cellModel& pyr = cellModel::ref(cellModel::PYR);
const cellModel& tet = cellModel::ref(cellModel::TET);
const cellShapeList& cells = cellShapes();
label nPolys = 0;
int nElemPerLine = 25; // Start with linebreak and indent
forAll(cells, celli)
{
if (nElemPerLine == 25)
{
// 25 elements per line with initial indent (readability)
fluentMeshFile << "\n ";
nElemPerLine = 0;
}
else if (!(nElemPerLine % 5))
{
// Format in blocks of 5 (readability)
fluentMeshFile << token::SPACE;
}
fluentMeshFile << token::SPACE;
++nElemPerLine;
if (cells[celli].model() == tet)
{
fluentMeshFile << 2;
}
else if (cells[celli].model() == hex)
{
fluentMeshFile << 4;
}
else if (cells[celli].model() == pyr)
{
fluentMeshFile << 5;
}
else if (cells[celli].model() == prism)
{
fluentMeshFile << 6;
}
else
{
fluentMeshFile << 7;
++nPolys;
}
}
fluentMeshFile
<< nl << "))" << nl;
if (nPolys)
{
Info<< "Mesh had " << nPolys << " polyhedrals." << endl;
}
// Return to dec
fluentMeshFile.setf(ios::dec, ios::basefield);
// Writing patch types
fluentMeshFile << "(39 (1 fluid fluid-1)())" << std::endl;
fluentMeshFile << "(39 (2 interior interior-1)())" << std::endl;
// Writing boundary patch types
forAll(boundary(), patchi)
{
fluentMeshFile
<< "(39 (" << patchi + 10 << " ";
// Write patch type
if (isA<wallFvPatch>(boundary()[patchi]))
{
fluentMeshFile << "wall ";
}
else if
(
isA<symmetryPlaneFvPatch>(boundary()[patchi])
|| isA<symmetryFvPatch>(boundary()[patchi])
)
{
fluentMeshFile << "symmetry ";
}
else
{
fluentMeshFile << "pressure-outlet ";
}
fluentMeshFile
<< boundary()[patchi].name() << ")())" << std::endl;
}
}
// ************************************************************************* //