openfoam/applications/utilities/thermophysical/adiabaticFlameT/adiabaticFlameT.C
Mark Olesen 5cf80f96e9 COMP: namespace qualify min/max functions (#3348)
FIX: missing patch face index writeFields (#3347)
2025-04-09 15:03:43 +02:00

227 lines
5.8 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
adiabaticFlameT
Group
grpThermophysicalUtilities
Description
Calculate adiabatic flame temperature for a given fuel over a
range of unburnt temperatures and equivalence ratios.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "dictionary.H"
#include "IFstream.H"
#include "OSspecific.H"
#include "etcFiles.H"
#include "specie.H"
#include "perfectGas.H"
#include "thermo.H"
#include "janafThermo.H"
#include "absoluteEnthalpy.H"
using namespace Foam;
typedef species::thermo<janafThermo<perfectGas<specie>>, absoluteEnthalpy>
thermo;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Calculate the adiabatic flame temperature for a given fuel over a "
" range of unburnt temperatures and equivalence ratios."
);
argList::noParallel();
argList::noFunctionObjects(); // Never use function objects
argList::addArgument("controlFile");
argList args(argc, argv);
const auto controlFileName = args.get<fileName>(1);
// Construct control dictionary
IFstream controlFile(controlFileName);
// Check controlFile stream is OK
if (!controlFile.good())
{
FatalErrorInFunction
<< "Cannot read file " << controlFileName
<< exit(FatalError);
}
dictionary control(controlFile);
const scalar P(control.get<scalar>("P"));
const scalar T0(control.get<scalar>("T0"));
const word fuelName(control.get<word>("fuel"));
const scalar n(control.get<scalar>("n"));
const scalar m(control.get<scalar>("m"));
Info<< nl << "Reading thermodynamic data dictionary" << endl;
fileName thermoDataFileName(findEtcFile("thermoData/thermoData"));
// Construct control dictionary
IFstream thermoDataFile(thermoDataFileName);
// Check thermoData stream is OK
if (!thermoDataFile.good())
{
FatalErrorInFunction
<< "Cannot read file " << thermoDataFileName
<< exit(FatalError);
}
dictionary thermoData(thermoDataFile);
scalar stoicO2 = n + m/4.0;
scalar stoicN2 = (0.79/0.21)*stoicO2;
scalar stoicCO2 = n;
scalar stoicH2O = m/2.0;
thermo FUEL
(
"fuel",
thermo(thermoData.subDict(fuelName))
);
Info<< "fuel " << FUEL << ';' << endl;
FUEL *= FUEL.W();
thermo O2
(
"O2",
thermo(thermoData.subDict("O2"))
);
O2 *= O2.W();
thermo N2
(
"N2",
thermo(thermoData.subDict("N2"))
);
N2 *= N2.W();
thermo CO2
(
"CO2",
thermo(thermoData.subDict("CO2"))
);
CO2 *= CO2.W();
thermo H2O
(
"H2O",
thermo(thermoData.subDict("H2O"))
);
H2O *= H2O.W();
thermo oxidant
(
"oxidant",
stoicO2*O2
+ stoicN2*N2
);
Info<< "oxidant " << (1/oxidant.Y())*oxidant << ';' << endl;
dimensionedScalar stoichiometricAirFuelMassRatio
(
"stoichiometricAirFuelMassRatio",
dimless,
oxidant.Y()/FUEL.W()
);
Info<< "stoichiometricAirFuelMassRatio "
<< stoichiometricAirFuelMassRatio << ';' << endl;
for (int i=0; i<300; i++)
{
scalar equiv = (i + 1)*0.01;
scalar ft = 1/(1 + stoichiometricAirFuelMassRatio.value()/equiv);
Info<< "phi = " << equiv << nl
<< "ft = " << ft << endl;
scalar o2 = (1.0/equiv)*stoicO2;
scalar n2 = (0.79/0.21)*o2;
scalar fres = Foam::max(1.0 - 1.0/equiv, 0.0);
scalar ores = Foam::max(1.0/equiv - 1.0, 0.0);
scalar fburnt = 1.0 - fres;
thermo reactants
(
"reactants",
FUEL + (1.0/equiv)*oxidant
);
Info<< "reactants " << (1/reactants.Y())*reactants << ';' << endl;
thermo burntProducts
(
"burntProducts",
+ (n2 - (0.79/0.21)*ores*stoicO2)*N2
+ fburnt*stoicCO2*CO2
+ fburnt*stoicH2O*H2O
);
Info<< "burntProducts "
<< (1/burntProducts.Y())*burntProducts << ';' << endl;
thermo products
(
"products",
fres*FUEL
+ n2*N2
+ fburnt*stoicCO2*CO2
+ fburnt*stoicH2O*H2O
+ ores*stoicO2*O2
);
Info<< "products " << (1/products.Y())*products << ';' << endl;
scalar Tad = products.THa(reactants.Ha(P, T0), P, 1000.0);
Info<< "Tad = " << Tad << nl << endl;
}
Info<< nl << "End" << endl;
return 0;
}
// ************************************************************************* //