227 lines
5.8 KiB
C
227 lines
5.8 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | www.openfoam.com
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
Copyright (C) 2011-2017 OpenFOAM Foundation
|
|
Copyright (C) 2021 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
adiabaticFlameT
|
|
|
|
Group
|
|
grpThermophysicalUtilities
|
|
|
|
Description
|
|
Calculate adiabatic flame temperature for a given fuel over a
|
|
range of unburnt temperatures and equivalence ratios.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "Time.H"
|
|
#include "dictionary.H"
|
|
#include "IFstream.H"
|
|
#include "OSspecific.H"
|
|
#include "etcFiles.H"
|
|
|
|
#include "specie.H"
|
|
#include "perfectGas.H"
|
|
#include "thermo.H"
|
|
#include "janafThermo.H"
|
|
#include "absoluteEnthalpy.H"
|
|
|
|
using namespace Foam;
|
|
|
|
typedef species::thermo<janafThermo<perfectGas<specie>>, absoluteEnthalpy>
|
|
thermo;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addNote
|
|
(
|
|
"Calculate the adiabatic flame temperature for a given fuel over a "
|
|
" range of unburnt temperatures and equivalence ratios."
|
|
);
|
|
|
|
argList::noParallel();
|
|
argList::noFunctionObjects(); // Never use function objects
|
|
|
|
argList::addArgument("controlFile");
|
|
|
|
argList args(argc, argv);
|
|
|
|
const auto controlFileName = args.get<fileName>(1);
|
|
|
|
// Construct control dictionary
|
|
IFstream controlFile(controlFileName);
|
|
|
|
// Check controlFile stream is OK
|
|
if (!controlFile.good())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot read file " << controlFileName
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
dictionary control(controlFile);
|
|
|
|
|
|
const scalar P(control.get<scalar>("P"));
|
|
const scalar T0(control.get<scalar>("T0"));
|
|
const word fuelName(control.get<word>("fuel"));
|
|
const scalar n(control.get<scalar>("n"));
|
|
const scalar m(control.get<scalar>("m"));
|
|
|
|
Info<< nl << "Reading thermodynamic data dictionary" << endl;
|
|
|
|
fileName thermoDataFileName(findEtcFile("thermoData/thermoData"));
|
|
|
|
// Construct control dictionary
|
|
IFstream thermoDataFile(thermoDataFileName);
|
|
|
|
// Check thermoData stream is OK
|
|
if (!thermoDataFile.good())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot read file " << thermoDataFileName
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
dictionary thermoData(thermoDataFile);
|
|
|
|
|
|
scalar stoicO2 = n + m/4.0;
|
|
scalar stoicN2 = (0.79/0.21)*stoicO2;
|
|
scalar stoicCO2 = n;
|
|
scalar stoicH2O = m/2.0;
|
|
|
|
thermo FUEL
|
|
(
|
|
"fuel",
|
|
thermo(thermoData.subDict(fuelName))
|
|
);
|
|
Info<< "fuel " << FUEL << ';' << endl;
|
|
FUEL *= FUEL.W();
|
|
|
|
thermo O2
|
|
(
|
|
"O2",
|
|
thermo(thermoData.subDict("O2"))
|
|
);
|
|
O2 *= O2.W();
|
|
|
|
thermo N2
|
|
(
|
|
"N2",
|
|
thermo(thermoData.subDict("N2"))
|
|
);
|
|
N2 *= N2.W();
|
|
|
|
thermo CO2
|
|
(
|
|
"CO2",
|
|
thermo(thermoData.subDict("CO2"))
|
|
);
|
|
CO2 *= CO2.W();
|
|
|
|
thermo H2O
|
|
(
|
|
"H2O",
|
|
thermo(thermoData.subDict("H2O"))
|
|
);
|
|
H2O *= H2O.W();
|
|
|
|
thermo oxidant
|
|
(
|
|
"oxidant",
|
|
stoicO2*O2
|
|
+ stoicN2*N2
|
|
);
|
|
Info<< "oxidant " << (1/oxidant.Y())*oxidant << ';' << endl;
|
|
|
|
dimensionedScalar stoichiometricAirFuelMassRatio
|
|
(
|
|
"stoichiometricAirFuelMassRatio",
|
|
dimless,
|
|
oxidant.Y()/FUEL.W()
|
|
);
|
|
|
|
Info<< "stoichiometricAirFuelMassRatio "
|
|
<< stoichiometricAirFuelMassRatio << ';' << endl;
|
|
|
|
for (int i=0; i<300; i++)
|
|
{
|
|
scalar equiv = (i + 1)*0.01;
|
|
scalar ft = 1/(1 + stoichiometricAirFuelMassRatio.value()/equiv);
|
|
|
|
Info<< "phi = " << equiv << nl
|
|
<< "ft = " << ft << endl;
|
|
|
|
scalar o2 = (1.0/equiv)*stoicO2;
|
|
scalar n2 = (0.79/0.21)*o2;
|
|
scalar fres = Foam::max(1.0 - 1.0/equiv, 0.0);
|
|
scalar ores = Foam::max(1.0/equiv - 1.0, 0.0);
|
|
scalar fburnt = 1.0 - fres;
|
|
|
|
thermo reactants
|
|
(
|
|
"reactants",
|
|
FUEL + (1.0/equiv)*oxidant
|
|
);
|
|
Info<< "reactants " << (1/reactants.Y())*reactants << ';' << endl;
|
|
|
|
thermo burntProducts
|
|
(
|
|
"burntProducts",
|
|
+ (n2 - (0.79/0.21)*ores*stoicO2)*N2
|
|
+ fburnt*stoicCO2*CO2
|
|
+ fburnt*stoicH2O*H2O
|
|
);
|
|
Info<< "burntProducts "
|
|
<< (1/burntProducts.Y())*burntProducts << ';' << endl;
|
|
|
|
thermo products
|
|
(
|
|
"products",
|
|
fres*FUEL
|
|
+ n2*N2
|
|
+ fburnt*stoicCO2*CO2
|
|
+ fburnt*stoicH2O*H2O
|
|
+ ores*stoicO2*O2
|
|
);
|
|
|
|
Info<< "products " << (1/products.Y())*products << ';' << endl;
|
|
|
|
scalar Tad = products.THa(reactants.Ha(P, T0), P, 1000.0);
|
|
Info<< "Tad = " << Tad << nl << endl;
|
|
}
|
|
|
|
Info<< nl << "End" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|