1793 lines
51 KiB
C
1793 lines
51 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
surfaceFeatureExtract
|
|
|
|
Description
|
|
Extracts and writes surface features to file. All but the basic feature
|
|
extraction is WIP.
|
|
|
|
Curvature calculation is an implementation of the algorithm from:
|
|
|
|
"Estimating Curvatures and their Derivatives on Triangle Meshes"
|
|
by S. Rusinkiewicz
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "Time.H"
|
|
#include "triSurface.H"
|
|
#include "surfaceFeatures.H"
|
|
#include "featureEdgeMesh.H"
|
|
#include "extendedFeatureEdgeMesh.H"
|
|
#include "treeBoundBox.H"
|
|
#include "meshTools.H"
|
|
#include "OFstream.H"
|
|
#include "triSurfaceMesh.H"
|
|
#include "vtkSurfaceWriter.H"
|
|
#include "triSurfaceFields.H"
|
|
#include "indexedOctree.H"
|
|
#include "treeDataEdge.H"
|
|
#include "unitConversion.H"
|
|
#include "plane.H"
|
|
#include "tensor2D.H"
|
|
#include "symmTensor2D.H"
|
|
#include "point.H"
|
|
#include "triadField.H"
|
|
#include "transform.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
scalar calcVertexNormalWeight
|
|
(
|
|
const triFace& f,
|
|
const label pI,
|
|
const vector& fN,
|
|
const pointField& points
|
|
)
|
|
{
|
|
label index = findIndex(f, pI);
|
|
|
|
if (index == -1)
|
|
{
|
|
FatalErrorIn("calcVertexNormals()")
|
|
<< "Point not in face" << abort(FatalError);
|
|
}
|
|
|
|
const vector e1 = points[f[index]] - points[f[f.fcIndex(index)]];
|
|
const vector e2 = points[f[index]] - points[f[f.rcIndex(index)]];
|
|
|
|
return mag(fN)/(magSqr(e1)*magSqr(e2) + VSMALL);
|
|
}
|
|
|
|
|
|
point randomPointInPlane(const plane& p)
|
|
{
|
|
// Perturb base point
|
|
const point& refPt = p.refPoint();
|
|
|
|
// ax + by + cz + d = 0
|
|
const FixedList<scalar, 4>& planeCoeffs = p.planeCoeffs();
|
|
|
|
const scalar perturbX = refPt.x() + 1e-3;
|
|
const scalar perturbY = refPt.y() + 1e-3;
|
|
const scalar perturbZ = refPt.z() + 1e-3;
|
|
|
|
if (mag(planeCoeffs[2]) < SMALL)
|
|
{
|
|
if (mag(planeCoeffs[1]) < SMALL)
|
|
{
|
|
const scalar x =
|
|
-1.0
|
|
*(
|
|
planeCoeffs[3]
|
|
+ planeCoeffs[1]*perturbY
|
|
+ planeCoeffs[2]*perturbZ
|
|
)/planeCoeffs[0];
|
|
|
|
return point
|
|
(
|
|
x,
|
|
perturbY,
|
|
perturbZ
|
|
);
|
|
}
|
|
|
|
const scalar y =
|
|
-1.0
|
|
*(
|
|
planeCoeffs[3]
|
|
+ planeCoeffs[0]*perturbX
|
|
+ planeCoeffs[2]*perturbZ
|
|
)/planeCoeffs[1];
|
|
|
|
return point
|
|
(
|
|
perturbX,
|
|
y,
|
|
perturbZ
|
|
);
|
|
}
|
|
else
|
|
{
|
|
const scalar z =
|
|
-1.0
|
|
*(
|
|
planeCoeffs[3]
|
|
+ planeCoeffs[0]*perturbX
|
|
+ planeCoeffs[1]*perturbY
|
|
)/planeCoeffs[2];
|
|
|
|
return point
|
|
(
|
|
perturbX,
|
|
perturbY,
|
|
z
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
triadField calcVertexCoordSys
|
|
(
|
|
const triSurface& surf,
|
|
const vectorField& pointNormals
|
|
)
|
|
{
|
|
const pointField& points = surf.points();
|
|
const Map<label>& meshPointMap = surf.meshPointMap();
|
|
|
|
triadField pointCoordSys(points.size());
|
|
|
|
forAll(points, pI)
|
|
{
|
|
const point& pt = points[pI];
|
|
const vector& normal = pointNormals[meshPointMap[pI]];
|
|
|
|
if (mag(normal) < SMALL)
|
|
{
|
|
pointCoordSys[meshPointMap[pI]] = triad::unset;
|
|
continue;
|
|
}
|
|
|
|
plane p(pt, normal);
|
|
|
|
// Pick random point in plane
|
|
vector dir1 = pt - randomPointInPlane(p);
|
|
dir1 /= mag(dir1);
|
|
|
|
vector dir2 = dir1 ^ normal;
|
|
dir2 /= mag(dir2);
|
|
|
|
pointCoordSys[meshPointMap[pI]] = triad(dir1, dir2, normal);
|
|
}
|
|
|
|
return pointCoordSys;
|
|
}
|
|
|
|
|
|
vectorField calcVertexNormals(const triSurface& surf)
|
|
{
|
|
// Weighted average of normals of faces attached to the vertex
|
|
// Weight = fA / (mag(e0)^2 * mag(e1)^2);
|
|
|
|
Info<< "Calculating vertex normals" << endl;
|
|
|
|
vectorField pointNormals(surf.nPoints(), vector::zero);
|
|
|
|
const pointField& points = surf.points();
|
|
const labelListList& pointFaces = surf.pointFaces();
|
|
const labelList& meshPoints = surf.meshPoints();
|
|
|
|
forAll(pointFaces, pI)
|
|
{
|
|
const labelList& pFaces = pointFaces[pI];
|
|
|
|
forAll(pFaces, fI)
|
|
{
|
|
const label faceI = pFaces[fI];
|
|
const triFace& f = surf[faceI];
|
|
|
|
vector fN = f.normal(points);
|
|
|
|
scalar weight = calcVertexNormalWeight
|
|
(
|
|
f,
|
|
meshPoints[pI],
|
|
fN,
|
|
points
|
|
);
|
|
|
|
pointNormals[pI] += weight*fN;
|
|
}
|
|
|
|
pointNormals[pI] /= mag(pointNormals[pI]) + VSMALL;
|
|
}
|
|
|
|
return pointNormals;
|
|
}
|
|
|
|
|
|
triSurfacePointScalarField calcCurvature
|
|
(
|
|
const word& name,
|
|
const Time& runTime,
|
|
const triSurface& surf,
|
|
const vectorField& pointNormals,
|
|
const triadField& pointCoordSys
|
|
)
|
|
{
|
|
Info<< "Calculating face curvature" << endl;
|
|
|
|
const pointField& points = surf.points();
|
|
const labelList& meshPoints = surf.meshPoints();
|
|
const Map<label>& meshPointMap = surf.meshPointMap();
|
|
|
|
triSurfacePointScalarField curvaturePointField
|
|
(
|
|
IOobject
|
|
(
|
|
name + ".curvature",
|
|
runTime.constant(),
|
|
"triSurface",
|
|
runTime,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
surf,
|
|
dimLength,
|
|
scalarField(points.size(), 0.0)
|
|
);
|
|
|
|
List<symmTensor2D> pointFundamentalTensors
|
|
(
|
|
points.size(),
|
|
symmTensor2D::zero
|
|
);
|
|
|
|
scalarList accumulatedWeights(points.size(), 0.0);
|
|
|
|
forAll(surf, fI)
|
|
{
|
|
const triFace& f = surf[fI];
|
|
const edgeList fEdges = f.edges();
|
|
|
|
// Calculate the edge vectors and the normal differences
|
|
vectorField edgeVectors(f.size(), vector::zero);
|
|
vectorField normalDifferences(f.size(), vector::zero);
|
|
|
|
forAll(fEdges, feI)
|
|
{
|
|
const edge& e = fEdges[feI];
|
|
|
|
edgeVectors[feI] = e.vec(points);
|
|
normalDifferences[feI] =
|
|
pointNormals[meshPointMap[e[0]]]
|
|
- pointNormals[meshPointMap[e[1]]];
|
|
}
|
|
|
|
// Set up a local coordinate system for the face
|
|
const vector& e0 = edgeVectors[0];
|
|
const vector eN = f.normal(points);
|
|
const vector e1 = (e0 ^ eN);
|
|
|
|
if (magSqr(eN) < ROOTVSMALL)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
triad faceCoordSys(e0, e1, eN);
|
|
faceCoordSys.normalize();
|
|
|
|
// Construct the matrix to solve
|
|
scalarSymmetricSquareMatrix T(3, 3, 0);
|
|
scalarDiagonalMatrix Z(3, 0);
|
|
|
|
// Least Squares
|
|
for (label i = 0; i < 3; ++i)
|
|
{
|
|
scalar x = edgeVectors[i] & faceCoordSys[0];
|
|
scalar y = edgeVectors[i] & faceCoordSys[1];
|
|
|
|
T[0][0] += sqr(x);
|
|
T[1][0] += x*y;
|
|
T[1][1] += sqr(x) + sqr(y);
|
|
T[2][1] += x*y;
|
|
T[2][2] += sqr(y);
|
|
|
|
scalar dndx = normalDifferences[i] & faceCoordSys[0];
|
|
scalar dndy = normalDifferences[i] & faceCoordSys[1];
|
|
|
|
Z[0] += dndx*x;
|
|
Z[1] += dndx*y + dndy*x;
|
|
Z[2] += dndy*y;
|
|
}
|
|
|
|
// Perform Cholesky decomposition and back substitution.
|
|
// Decomposed matrix is in T and solution is in Z.
|
|
LUsolve(T, Z);
|
|
symmTensor2D secondFundamentalTensor(Z[0], Z[1], Z[2]);
|
|
|
|
// Loop over the face points adding the contribution of the face
|
|
// curvature to the points.
|
|
forAll(f, fpI)
|
|
{
|
|
const label patchPointIndex = meshPointMap[f[fpI]];
|
|
|
|
const triad& ptCoordSys = pointCoordSys[patchPointIndex];
|
|
|
|
if (!ptCoordSys.set())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// Rotate faceCoordSys to ptCoordSys
|
|
tensor rotTensor = rotationTensor(ptCoordSys[2], faceCoordSys[2]);
|
|
triad rotatedFaceCoordSys = rotTensor & tensor(faceCoordSys);
|
|
|
|
// Project the face curvature onto the point plane
|
|
|
|
vector2D cmp1
|
|
(
|
|
ptCoordSys[0] & rotatedFaceCoordSys[0],
|
|
ptCoordSys[0] & rotatedFaceCoordSys[1]
|
|
);
|
|
vector2D cmp2
|
|
(
|
|
ptCoordSys[1] & rotatedFaceCoordSys[0],
|
|
ptCoordSys[1] & rotatedFaceCoordSys[1]
|
|
);
|
|
|
|
tensor2D projTensor
|
|
(
|
|
cmp1,
|
|
cmp2
|
|
);
|
|
|
|
symmTensor2D projectedFundamentalTensor
|
|
(
|
|
projTensor.x() & (secondFundamentalTensor & projTensor.x()),
|
|
projTensor.x() & (secondFundamentalTensor & projTensor.y()),
|
|
projTensor.y() & (secondFundamentalTensor & projTensor.y())
|
|
);
|
|
|
|
// Calculate weight
|
|
// @todo Voronoi area weighting
|
|
scalar weight = calcVertexNormalWeight
|
|
(
|
|
f,
|
|
meshPoints[patchPointIndex],
|
|
f.normal(points),
|
|
points
|
|
);
|
|
|
|
// Sum contribution of face to this point
|
|
pointFundamentalTensors[patchPointIndex] +=
|
|
weight*projectedFundamentalTensor;
|
|
|
|
accumulatedWeights[patchPointIndex] += weight;
|
|
}
|
|
|
|
if (false)
|
|
{
|
|
Info<< "Points = " << points[f[0]] << " "
|
|
<< points[f[1]] << " "
|
|
<< points[f[2]] << endl;
|
|
Info<< "edgeVecs = " << edgeVectors[0] << " "
|
|
<< edgeVectors[1] << " "
|
|
<< edgeVectors[2] << endl;
|
|
Info<< "normDiff = " << normalDifferences[0] << " "
|
|
<< normalDifferences[1] << " "
|
|
<< normalDifferences[2] << endl;
|
|
Info<< "faceCoordSys = " << faceCoordSys << endl;
|
|
Info<< "T = " << T << endl;
|
|
Info<< "Z = " << Z << endl;
|
|
}
|
|
}
|
|
|
|
forAll(curvaturePointField, pI)
|
|
{
|
|
pointFundamentalTensors[pI] /= (accumulatedWeights[pI] + SMALL);
|
|
|
|
vector2D principalCurvatures = eigenValues(pointFundamentalTensors[pI]);
|
|
|
|
//scalar curvature =
|
|
// (principalCurvatures[0] + principalCurvatures[1])/2;
|
|
scalar curvature = max
|
|
(
|
|
mag(principalCurvatures[0]),
|
|
mag(principalCurvatures[1])
|
|
);
|
|
//scalar curvature = principalCurvatures[0]*principalCurvatures[1];
|
|
|
|
curvaturePointField[meshPoints[pI]] = curvature;
|
|
}
|
|
|
|
return curvaturePointField;
|
|
}
|
|
|
|
|
|
bool edgesConnected(const edge& e1, const edge& e2)
|
|
{
|
|
if
|
|
(
|
|
e1.start() == e2.start()
|
|
|| e1.start() == e2.end()
|
|
|| e1.end() == e2.start()
|
|
|| e1.end() == e2.end()
|
|
)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
scalar calcProximityOfFeaturePoints
|
|
(
|
|
const List<pointIndexHit>& hitList,
|
|
const scalar defaultCellSize
|
|
)
|
|
{
|
|
scalar minDist = defaultCellSize;
|
|
|
|
for
|
|
(
|
|
label hI1 = 0;
|
|
hI1 < hitList.size() - 1;
|
|
++hI1
|
|
)
|
|
{
|
|
const pointIndexHit& pHit1 = hitList[hI1];
|
|
|
|
if (pHit1.hit())
|
|
{
|
|
for
|
|
(
|
|
label hI2 = hI1 + 1;
|
|
hI2 < hitList.size();
|
|
++hI2
|
|
)
|
|
{
|
|
const pointIndexHit& pHit2 = hitList[hI2];
|
|
|
|
if (pHit2.hit())
|
|
{
|
|
scalar curDist = mag(pHit1.hitPoint() - pHit2.hitPoint());
|
|
|
|
minDist = min(curDist, minDist);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return minDist;
|
|
}
|
|
|
|
|
|
scalar calcProximityOfFeatureEdges
|
|
(
|
|
const extendedFeatureEdgeMesh& efem,
|
|
const List<pointIndexHit>& hitList,
|
|
const scalar defaultCellSize
|
|
)
|
|
{
|
|
scalar minDist = defaultCellSize;
|
|
|
|
for
|
|
(
|
|
label hI1 = 0;
|
|
hI1 < hitList.size() - 1;
|
|
++hI1
|
|
)
|
|
{
|
|
const pointIndexHit& pHit1 = hitList[hI1];
|
|
|
|
if (pHit1.hit())
|
|
{
|
|
const edge& e1 = efem.edges()[pHit1.index()];
|
|
|
|
for
|
|
(
|
|
label hI2 = hI1 + 1;
|
|
hI2 < hitList.size();
|
|
++hI2
|
|
)
|
|
{
|
|
const pointIndexHit& pHit2 = hitList[hI2];
|
|
|
|
if (pHit2.hit())
|
|
{
|
|
const edge& e2 = efem.edges()[pHit2.index()];
|
|
|
|
// Don't refine if the edges are connected to each other
|
|
if (!edgesConnected(e1, e2))
|
|
{
|
|
scalar curDist =
|
|
mag(pHit1.hitPoint() - pHit2.hitPoint());
|
|
|
|
minDist = min(curDist, minDist);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return minDist;
|
|
}
|
|
|
|
|
|
void dumpBox(const treeBoundBox& bb, const fileName& fName)
|
|
{
|
|
OFstream str(fName);
|
|
|
|
Info<< "Dumping bounding box " << bb << " as lines to obj file "
|
|
<< str.name() << endl;
|
|
|
|
|
|
pointField boxPoints(bb.points());
|
|
|
|
forAll(boxPoints, i)
|
|
{
|
|
meshTools::writeOBJ(str, boxPoints[i]);
|
|
}
|
|
|
|
forAll(treeBoundBox::edges, i)
|
|
{
|
|
const edge& e = treeBoundBox::edges[i];
|
|
|
|
str<< "l " << e[0]+1 << ' ' << e[1]+1 << nl;
|
|
}
|
|
}
|
|
|
|
|
|
// Deletes all edges inside/outside bounding box from set.
|
|
void deleteBox
|
|
(
|
|
const triSurface& surf,
|
|
const treeBoundBox& bb,
|
|
const bool removeInside,
|
|
List<surfaceFeatures::edgeStatus>& edgeStat
|
|
)
|
|
{
|
|
forAll(edgeStat, edgeI)
|
|
{
|
|
const point eMid = surf.edges()[edgeI].centre(surf.localPoints());
|
|
|
|
if (removeInside ? bb.contains(eMid) : !bb.contains(eMid))
|
|
{
|
|
edgeStat[edgeI] = surfaceFeatures::NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool onLine(const point& p, const linePointRef& line)
|
|
{
|
|
const point& a = line.start();
|
|
const point& b = line.end();
|
|
|
|
if
|
|
(
|
|
( p.x() < min(a.x(), b.x()) || p.x() > max(a.x(), b.x()) )
|
|
|| ( p.y() < min(a.y(), b.y()) || p.y() > max(a.y(), b.y()) )
|
|
|| ( p.z() < min(a.z(), b.z()) || p.z() > max(a.z(), b.z()) )
|
|
)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Deletes all edges inside/outside bounding box from set.
|
|
void deleteEdges
|
|
(
|
|
const triSurface& surf,
|
|
const plane& cutPlane,
|
|
List<surfaceFeatures::edgeStatus>& edgeStat
|
|
)
|
|
{
|
|
const pointField& points = surf.points();
|
|
const labelList& meshPoints = surf.meshPoints();
|
|
|
|
forAll(edgeStat, edgeI)
|
|
{
|
|
const edge& e = surf.edges()[edgeI];
|
|
const point& p0 = points[meshPoints[e.start()]];
|
|
const point& p1 = points[meshPoints[e.end()]];
|
|
const linePointRef line(p0, p1);
|
|
|
|
// If edge does not intersect the plane, delete.
|
|
scalar intersect = cutPlane.lineIntersect(line);
|
|
|
|
point featPoint = intersect * (p1 - p0) + p0;
|
|
|
|
if (!onLine(featPoint, line))
|
|
{
|
|
edgeStat[edgeI] = surfaceFeatures::NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void drawHitProblem
|
|
(
|
|
label fI,
|
|
const triSurface& surf,
|
|
const pointField& start,
|
|
const pointField& faceCentres,
|
|
const pointField& end,
|
|
const List<pointIndexHit>& hitInfo
|
|
)
|
|
{
|
|
Info<< nl << "# findLineAll did not hit its own face."
|
|
<< nl << "# fI " << fI
|
|
<< nl << "# start " << start[fI]
|
|
<< nl << "# f centre " << faceCentres[fI]
|
|
<< nl << "# end " << end[fI]
|
|
<< nl << "# hitInfo " << hitInfo
|
|
<< endl;
|
|
|
|
meshTools::writeOBJ(Info, start[fI]);
|
|
meshTools::writeOBJ(Info, faceCentres[fI]);
|
|
meshTools::writeOBJ(Info, end[fI]);
|
|
|
|
Info<< "l 1 2 3" << endl;
|
|
|
|
meshTools::writeOBJ(Info, surf.points()[surf[fI][0]]);
|
|
meshTools::writeOBJ(Info, surf.points()[surf[fI][1]]);
|
|
meshTools::writeOBJ(Info, surf.points()[surf[fI][2]]);
|
|
|
|
Info<< "f 4 5 6" << endl;
|
|
|
|
forAll(hitInfo, hI)
|
|
{
|
|
label hFI = hitInfo[hI].index();
|
|
|
|
meshTools::writeOBJ(Info, surf.points()[surf[hFI][0]]);
|
|
meshTools::writeOBJ(Info, surf.points()[surf[hFI][1]]);
|
|
meshTools::writeOBJ(Info, surf.points()[surf[hFI][2]]);
|
|
|
|
Info<< "f "
|
|
<< 3*hI + 7 << " "
|
|
<< 3*hI + 8 << " "
|
|
<< 3*hI + 9
|
|
<< endl;
|
|
}
|
|
}
|
|
|
|
|
|
// Unmark non-manifold edges if individual triangles are not features
|
|
void unmarkBaffles
|
|
(
|
|
const triSurface& surf,
|
|
const scalar includedAngle,
|
|
List<surfaceFeatures::edgeStatus>& edgeStat
|
|
)
|
|
{
|
|
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
|
|
|
|
const labelListList& edgeFaces = surf.edgeFaces();
|
|
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
const labelList& eFaces = edgeFaces[edgeI];
|
|
|
|
if (eFaces.size() > 2)
|
|
{
|
|
label i0 = eFaces[0];
|
|
//const labelledTri& f0 = surf[i0];
|
|
const Foam::vector& n0 = surf.faceNormals()[i0];
|
|
|
|
//Pout<< "edge:" << edgeI << " n0:" << n0 << endl;
|
|
|
|
bool same = true;
|
|
|
|
for (label i = 1; i < eFaces.size(); i++)
|
|
{
|
|
//const labelledTri& f = surf[i];
|
|
const Foam::vector& n = surf.faceNormals()[eFaces[i]];
|
|
|
|
//Pout<< " mag(n&n0): " << mag(n&n0) << endl;
|
|
|
|
if (mag(n&n0) < minCos)
|
|
{
|
|
same = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (same)
|
|
{
|
|
edgeStat[edgeI] = surfaceFeatures::NONE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//- Divide into multiple normal bins
|
|
// - return REGION if != 2 normals
|
|
// - return REGION if 2 normals that make feature angle
|
|
// - otherwise return NONE and set normals,bins
|
|
surfaceFeatures::edgeStatus checkFlatRegionEdge
|
|
(
|
|
const triSurface& surf,
|
|
const scalar tol,
|
|
const scalar includedAngle,
|
|
const label edgeI
|
|
)
|
|
{
|
|
const edge& e = surf.edges()[edgeI];
|
|
const labelList& eFaces = surf.edgeFaces()[edgeI];
|
|
|
|
// Bin according to normal
|
|
|
|
DynamicList<Foam::vector> normals(2);
|
|
DynamicList<labelList> bins(2);
|
|
|
|
forAll(eFaces, eFaceI)
|
|
{
|
|
const Foam::vector& n = surf.faceNormals()[eFaces[eFaceI]];
|
|
|
|
// Find the normal in normals
|
|
label index = -1;
|
|
forAll(normals, normalI)
|
|
{
|
|
if (mag(n&normals[normalI]) > (1-tol))
|
|
{
|
|
index = normalI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (index != -1)
|
|
{
|
|
bins[index].append(eFaceI);
|
|
}
|
|
else if (normals.size() >= 2)
|
|
{
|
|
// Would be third normal. Mark as feature.
|
|
//Pout<< "** at edge:" << surf.localPoints()[e[0]]
|
|
// << surf.localPoints()[e[1]]
|
|
// << " have normals:" << normals
|
|
// << " and " << n << endl;
|
|
return surfaceFeatures::REGION;
|
|
}
|
|
else
|
|
{
|
|
normals.append(n);
|
|
bins.append(labelList(1, eFaceI));
|
|
}
|
|
}
|
|
|
|
|
|
// Check resulting number of bins
|
|
if (bins.size() == 1)
|
|
{
|
|
// Note: should check here whether they are two sets of faces
|
|
// that are planar or indeed 4 faces al coming together at an edge.
|
|
//Pout<< "** at edge:"
|
|
// << surf.localPoints()[e[0]]
|
|
// << surf.localPoints()[e[1]]
|
|
// << " have single normal:" << normals[0]
|
|
// << endl;
|
|
return surfaceFeatures::NONE;
|
|
}
|
|
else
|
|
{
|
|
// Two bins. Check if normals make an angle
|
|
|
|
//Pout<< "** at edge:"
|
|
// << surf.localPoints()[e[0]]
|
|
// << surf.localPoints()[e[1]] << nl
|
|
// << " normals:" << normals << nl
|
|
// << " bins :" << bins << nl
|
|
// << endl;
|
|
|
|
if (includedAngle >= 0)
|
|
{
|
|
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
|
|
|
|
forAll(eFaces, i)
|
|
{
|
|
const Foam::vector& ni = surf.faceNormals()[eFaces[i]];
|
|
for (label j=i+1; j<eFaces.size(); j++)
|
|
{
|
|
const Foam::vector& nj = surf.faceNormals()[eFaces[j]];
|
|
if (mag(ni & nj) < minCos)
|
|
{
|
|
//Pout<< "have sharp feature between normal:" << ni
|
|
// << " and " << nj << endl;
|
|
|
|
// Is feature. Keep as region or convert to
|
|
// feature angle? For now keep as region.
|
|
return surfaceFeatures::REGION;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// So now we have two normals bins but need to make sure both
|
|
// bins have the same regions in it.
|
|
|
|
// 1. store + or - region number depending
|
|
// on orientation of triangle in bins[0]
|
|
const labelList& bin0 = bins[0];
|
|
labelList regionAndNormal(bin0.size());
|
|
forAll(bin0, i)
|
|
{
|
|
const labelledTri& t = surf.localFaces()[eFaces[bin0[i]]];
|
|
int dir = t.edgeDirection(e);
|
|
|
|
if (dir > 0)
|
|
{
|
|
regionAndNormal[i] = t.region()+1;
|
|
}
|
|
else if (dir == 0)
|
|
{
|
|
FatalErrorIn("problem.")
|
|
<< exit(FatalError);
|
|
}
|
|
else
|
|
{
|
|
regionAndNormal[i] = -(t.region()+1);
|
|
}
|
|
}
|
|
|
|
// 2. check against bin1
|
|
const labelList& bin1 = bins[1];
|
|
labelList regionAndNormal1(bin1.size());
|
|
forAll(bin1, i)
|
|
{
|
|
const labelledTri& t = surf.localFaces()[eFaces[bin1[i]]];
|
|
int dir = t.edgeDirection(e);
|
|
|
|
label myRegionAndNormal;
|
|
if (dir > 0)
|
|
{
|
|
myRegionAndNormal = t.region()+1;
|
|
}
|
|
else
|
|
{
|
|
myRegionAndNormal = -(t.region()+1);
|
|
}
|
|
|
|
regionAndNormal1[i] = myRegionAndNormal;
|
|
|
|
label index = findIndex(regionAndNormal, -myRegionAndNormal);
|
|
if (index == -1)
|
|
{
|
|
// Not found.
|
|
//Pout<< "cannot find region " << myRegionAndNormal
|
|
// << " in regions " << regionAndNormal << endl;
|
|
|
|
return surfaceFeatures::REGION;
|
|
}
|
|
}
|
|
|
|
// Passed all checks, two normal bins with the same contents.
|
|
//Pout<< "regionAndNormal:" << regionAndNormal << endl;
|
|
//Pout<< "myRegionAndNormal:" << regionAndNormal1 << endl;
|
|
|
|
return surfaceFeatures::NONE;
|
|
}
|
|
}
|
|
|
|
|
|
void writeStats(const extendedFeatureEdgeMesh& fem, Ostream& os)
|
|
{
|
|
os << " points : " << fem.points().size() << nl
|
|
<< " of which" << nl
|
|
<< " convex : "
|
|
<< fem.concaveStart() << nl
|
|
<< " concave : "
|
|
<< (fem.mixedStart()-fem.concaveStart()) << nl
|
|
<< " mixed : "
|
|
<< (fem.nonFeatureStart()-fem.mixedStart()) << nl
|
|
<< " non-feature : "
|
|
<< (fem.points().size()-fem.nonFeatureStart()) << nl
|
|
<< " edges : " << fem.edges().size() << nl
|
|
<< " of which" << nl
|
|
<< " external edges : "
|
|
<< fem.internalStart() << nl
|
|
<< " internal edges : "
|
|
<< (fem.flatStart()- fem.internalStart()) << nl
|
|
<< " flat edges : "
|
|
<< (fem.openStart()- fem.flatStart()) << nl
|
|
<< " open edges : "
|
|
<< (fem.multipleStart()- fem.openStart()) << nl
|
|
<< " multiply connected : "
|
|
<< (fem.edges().size()- fem.multipleStart()) << endl;
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addNote
|
|
(
|
|
"extract and write surface features to file"
|
|
);
|
|
argList::noParallel();
|
|
|
|
# include "addDictOption.H"
|
|
|
|
# include "setRootCase.H"
|
|
# include "createTime.H"
|
|
|
|
const word dictName("surfaceFeatureExtractDict");
|
|
# include "setSystemRunTimeDictionaryIO.H"
|
|
|
|
Info<< "Reading " << dictName << nl << endl;
|
|
|
|
const IOdictionary dict(dictIO);
|
|
|
|
forAllConstIter(dictionary, dict, iter)
|
|
{
|
|
if (!iter().isDict())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
const dictionary& surfaceDict = iter().dict();
|
|
|
|
if (!surfaceDict.found("extractionMethod"))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
const word extractionMethod = surfaceDict.lookup("extractionMethod");
|
|
|
|
const fileName surfFileName = iter().keyword();
|
|
const fileName sFeatFileName = surfFileName.lessExt().name();
|
|
|
|
Info<< "Surface : " << surfFileName << nl << endl;
|
|
|
|
const Switch writeVTK =
|
|
surfaceDict.lookupOrDefault<Switch>("writeVTK", "off");
|
|
const Switch writeObj =
|
|
surfaceDict.lookupOrDefault<Switch>("writeObj", "off");
|
|
|
|
const Switch curvature =
|
|
surfaceDict.lookupOrDefault<Switch>("curvature", "off");
|
|
const Switch featureProximity =
|
|
surfaceDict.lookupOrDefault<Switch>("featureProximity", "off");
|
|
const Switch closeness =
|
|
surfaceDict.lookupOrDefault<Switch>("closeness", "off");
|
|
|
|
|
|
Info<< nl << "Feature line extraction is only valid on closed manifold "
|
|
<< "surfaces." << endl;
|
|
|
|
// Read
|
|
// ~~~~
|
|
|
|
triSurface surf(runTime.constantPath()/"triSurface"/surfFileName);
|
|
|
|
Info<< "Statistics:" << endl;
|
|
surf.writeStats(Info);
|
|
Info<< endl;
|
|
|
|
faceList faces(surf.size());
|
|
|
|
forAll(surf, fI)
|
|
{
|
|
faces[fI] = surf[fI].triFaceFace();
|
|
}
|
|
|
|
|
|
// Either construct features from surface & featureAngle or read set.
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
autoPtr<surfaceFeatures> set;
|
|
|
|
scalar includedAngle = 0.0;
|
|
|
|
if (extractionMethod == "extractFromFile")
|
|
{
|
|
const dictionary& extractFromFileDict =
|
|
surfaceDict.subDict("extractFromFileCoeffs");
|
|
|
|
const fileName featureEdgeFile =
|
|
extractFromFileDict.lookup("featureEdgeFile");
|
|
|
|
const Switch geometricTestOnly =
|
|
extractFromFileDict.lookupOrDefault<Switch>
|
|
(
|
|
"geometricTestOnly",
|
|
"no"
|
|
);
|
|
|
|
edgeMesh eMesh(featureEdgeFile);
|
|
|
|
// Sometimes duplicate edges are present. Remove them.
|
|
eMesh.mergeEdges();
|
|
|
|
Info<< nl << "Reading existing feature edges from file "
|
|
<< featureEdgeFile << nl
|
|
<< "Selecting edges purely based on geometric tests: "
|
|
<< geometricTestOnly.asText() << endl;
|
|
|
|
set.set
|
|
(
|
|
new surfaceFeatures
|
|
(
|
|
surf,
|
|
eMesh.points(),
|
|
eMesh.edges(),
|
|
1e-6,
|
|
geometricTestOnly
|
|
)
|
|
);
|
|
}
|
|
else if (extractionMethod == "extractFromSurface")
|
|
{
|
|
const dictionary& extractFromSurfaceDict =
|
|
surfaceDict.subDict("extractFromSurfaceCoeffs");
|
|
|
|
includedAngle =
|
|
readScalar(extractFromSurfaceDict.lookup("includedAngle"));
|
|
|
|
const Switch geometricTestOnly =
|
|
extractFromSurfaceDict.lookupOrDefault<Switch>
|
|
(
|
|
"geometricTestOnly",
|
|
"no"
|
|
);
|
|
|
|
Info<< nl
|
|
<< "Constructing feature set from included angle "
|
|
<< includedAngle << nl
|
|
<< "Selecting edges purely based on geometric tests: "
|
|
<< geometricTestOnly.asText() << endl;
|
|
|
|
set.set
|
|
(
|
|
new surfaceFeatures
|
|
(
|
|
surf,
|
|
includedAngle,
|
|
0,
|
|
0,
|
|
geometricTestOnly
|
|
)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "No initial feature set. Provide either one"
|
|
<< " of extractFromFile (to read existing set)" << nl
|
|
<< " or extractFromSurface (to construct new set from angle)"
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
|
|
// Trim set
|
|
// ~~~~~~~~
|
|
|
|
if (surfaceDict.isDict("trimFeatures"))
|
|
{
|
|
dictionary trimDict = surfaceDict.subDict("trimFeatures");
|
|
|
|
scalar minLen =
|
|
trimDict.lookupOrAddDefault<scalar>("minLen", -GREAT);
|
|
|
|
label minElem = trimDict.lookupOrAddDefault<label>("minElem", 0);
|
|
|
|
// Trim away small groups of features
|
|
if (minElem > 0 || minLen > 0)
|
|
{
|
|
Info<< "Removing features of length < "
|
|
<< minLen << endl;
|
|
Info<< "Removing features with number of edges < "
|
|
<< minElem << endl;
|
|
|
|
set().trimFeatures(minLen, minElem, includedAngle);
|
|
}
|
|
}
|
|
|
|
|
|
// Subset
|
|
// ~~~~~~
|
|
|
|
// Convert to marked edges, points
|
|
List<surfaceFeatures::edgeStatus> edgeStat(set().toStatus());
|
|
|
|
if (surfaceDict.isDict("subsetFeatures"))
|
|
{
|
|
const dictionary& subsetDict = surfaceDict.subDict
|
|
(
|
|
"subsetFeatures"
|
|
);
|
|
|
|
if (subsetDict.found("insideBox"))
|
|
{
|
|
treeBoundBox bb(subsetDict.lookup("insideBox")());
|
|
|
|
Info<< "Removing all edges outside bb " << bb << endl;
|
|
dumpBox(bb, "subsetBox.obj");
|
|
|
|
deleteBox(surf, bb, false, edgeStat);
|
|
}
|
|
else if (subsetDict.found("outsideBox"))
|
|
{
|
|
treeBoundBox bb(subsetDict.lookup("outsideBox")());
|
|
|
|
Info<< "Removing all edges inside bb " << bb << endl;
|
|
dumpBox(bb, "deleteBox.obj");
|
|
|
|
deleteBox(surf, bb, true, edgeStat);
|
|
}
|
|
|
|
const Switch nonManifoldEdges =
|
|
subsetDict.lookupOrDefault<Switch>("nonManifoldEdges", "yes");
|
|
|
|
if (!nonManifoldEdges)
|
|
{
|
|
Info<< "Removing all non-manifold edges"
|
|
<< " (edges with > 2 connected faces) unless they"
|
|
<< " cross multiple regions" << endl;
|
|
|
|
forAll(edgeStat, edgeI)
|
|
{
|
|
const labelList& eFaces = surf.edgeFaces()[edgeI];
|
|
|
|
if
|
|
(
|
|
eFaces.size() > 2
|
|
&& edgeStat[edgeI] == surfaceFeatures::REGION
|
|
&& (eFaces.size() % 2) == 0
|
|
)
|
|
{
|
|
edgeStat[edgeI] = checkFlatRegionEdge
|
|
(
|
|
surf,
|
|
1e-5, //tol,
|
|
includedAngle,
|
|
edgeI
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
const Switch openEdges =
|
|
subsetDict.lookupOrDefault<Switch>("openEdges", "yes");
|
|
|
|
if (!openEdges)
|
|
{
|
|
Info<< "Removing all open edges"
|
|
<< " (edges with 1 connected face)" << endl;
|
|
|
|
forAll(edgeStat, edgeI)
|
|
{
|
|
if (surf.edgeFaces()[edgeI].size() == 1)
|
|
{
|
|
edgeStat[edgeI] = surfaceFeatures::NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (subsetDict.found("plane"))
|
|
{
|
|
plane cutPlane(subsetDict.lookup("plane")());
|
|
|
|
deleteEdges(surf, cutPlane, edgeStat);
|
|
|
|
Info<< "Only edges that intersect the plane with normal "
|
|
<< cutPlane.normal()
|
|
<< " and base point " << cutPlane.refPoint()
|
|
<< " will be included as feature edges."<< endl;
|
|
}
|
|
}
|
|
|
|
|
|
surfaceFeatures newSet(surf);
|
|
newSet.setFromStatus(edgeStat, includedAngle);
|
|
|
|
Info<< nl
|
|
<< "Initial feature set:" << nl
|
|
<< " feature points : " << newSet.featurePoints().size() << nl
|
|
<< " feature edges : " << newSet.featureEdges().size() << nl
|
|
<< " of which" << nl
|
|
<< " region edges : " << newSet.nRegionEdges() << nl
|
|
<< " external edges : " << newSet.nExternalEdges() << nl
|
|
<< " internal edges : " << newSet.nInternalEdges() << nl
|
|
<< endl;
|
|
|
|
if (writeObj)
|
|
{
|
|
newSet.writeObj("final");
|
|
}
|
|
|
|
boolList surfBaffleRegions(surf.patches().size(), false);
|
|
|
|
wordList surfBaffleNames;
|
|
surfaceDict.readIfPresent("baffles", surfBaffleNames);
|
|
|
|
forAll(surf.patches(), pI)
|
|
{
|
|
const word& name = surf.patches()[pI].name();
|
|
|
|
if (findIndex(surfBaffleNames, name) != -1)
|
|
{
|
|
Info<< "Adding baffle region " << name << endl;
|
|
surfBaffleRegions[pI] = true;
|
|
}
|
|
}
|
|
|
|
// Extracting and writing a extendedFeatureEdgeMesh
|
|
extendedFeatureEdgeMesh feMesh
|
|
(
|
|
newSet,
|
|
runTime,
|
|
sFeatFileName + ".extendedFeatureEdgeMesh",
|
|
surfBaffleRegions
|
|
);
|
|
|
|
|
|
if (surfaceDict.isDict("addFeatures"))
|
|
{
|
|
const word addFeName = surfaceDict.subDict("addFeatures")["name"];
|
|
Info<< "Adding (without merging) features from " << addFeName
|
|
<< nl << endl;
|
|
|
|
extendedFeatureEdgeMesh addFeMesh
|
|
(
|
|
IOobject
|
|
(
|
|
addFeName,
|
|
runTime.time().constant(),
|
|
"extendedFeatureEdgeMesh",
|
|
runTime.time(),
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE
|
|
)
|
|
);
|
|
Info<< "Read " << addFeMesh.name() << nl;
|
|
writeStats(addFeMesh, Info);
|
|
|
|
feMesh.add(addFeMesh);
|
|
}
|
|
|
|
|
|
Info<< nl
|
|
<< "Final feature set:" << nl;
|
|
writeStats(feMesh, Info);
|
|
|
|
Info<< nl << "Writing extendedFeatureEdgeMesh to "
|
|
<< feMesh.objectPath() << endl;
|
|
|
|
mkDir(feMesh.path());
|
|
|
|
if (writeObj)
|
|
{
|
|
feMesh.writeObj(feMesh.path()/surfFileName.lessExt().name());
|
|
}
|
|
|
|
feMesh.write();
|
|
|
|
// Write a featureEdgeMesh for backwards compatibility
|
|
featureEdgeMesh bfeMesh
|
|
(
|
|
IOobject
|
|
(
|
|
surfFileName.lessExt().name() + ".eMesh", // name
|
|
runTime.constant(), // instance
|
|
"triSurface",
|
|
runTime, // registry
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE,
|
|
false
|
|
),
|
|
feMesh.points(),
|
|
feMesh.edges()
|
|
);
|
|
|
|
Info<< nl << "Writing featureEdgeMesh to "
|
|
<< bfeMesh.objectPath() << endl;
|
|
|
|
bfeMesh.regIOobject::write();
|
|
|
|
// Find close features
|
|
|
|
// // Dummy trim operation to mark features
|
|
// labelList featureEdgeIndexing = newSet.trimFeatures(-GREAT, 0);
|
|
|
|
// scalarField surfacePtFeatureIndex(surf.points().size(), -1);
|
|
|
|
// forAll(newSet.featureEdges(), eI)
|
|
// {
|
|
// const edge& e = surf.edges()[newSet.featureEdges()[eI]];
|
|
|
|
// surfacePtFeatureIndex[surf.meshPoints()[e.start()]] =
|
|
// featureEdgeIndexing[newSet.featureEdges()[eI]];
|
|
|
|
// surfacePtFeatureIndex[surf.meshPoints()[e.end()]] =
|
|
// featureEdgeIndexing[newSet.featureEdges()[eI]];
|
|
// }
|
|
|
|
// if (writeVTK)
|
|
// {
|
|
// vtkSurfaceWriter().write
|
|
// (
|
|
// runTime.constant()/"triSurface", // outputDir
|
|
// sFeatFileName, // surfaceName
|
|
// surf.points(),
|
|
// faces,
|
|
// "surfacePtFeatureIndex", // fieldName
|
|
// surfacePtFeatureIndex,
|
|
// true, // isNodeValues
|
|
// true // verbose
|
|
// );
|
|
// }
|
|
|
|
// Random rndGen(343267);
|
|
|
|
// treeBoundBox surfBB
|
|
// (
|
|
// treeBoundBox(searchSurf.bounds()).extend(rndGen, 1e-4)
|
|
// );
|
|
|
|
// surfBB.min() -= Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
|
|
// surfBB.max() += Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
|
|
|
|
// indexedOctree<treeDataEdge> ftEdTree
|
|
// (
|
|
// treeDataEdge
|
|
// (
|
|
// false,
|
|
// surf.edges(),
|
|
// surf.localPoints(),
|
|
// newSet.featureEdges()
|
|
// ),
|
|
// surfBB,
|
|
// 8, // maxLevel
|
|
// 10, // leafsize
|
|
// 3.0 // duplicity
|
|
// );
|
|
|
|
// labelList nearPoints = ftEdTree.findBox
|
|
// (
|
|
// treeBoundBox
|
|
// (
|
|
// sPt - featureSearchSpan*Foam::vector::one,
|
|
// sPt + featureSearchSpan*Foam::vector::one
|
|
// )
|
|
// );
|
|
|
|
if (closeness)
|
|
{
|
|
Info<< nl << "Extracting internal and external closeness of "
|
|
<< "surface." << endl;
|
|
|
|
|
|
triSurfaceMesh searchSurf
|
|
(
|
|
IOobject
|
|
(
|
|
sFeatFileName + ".closeness",
|
|
runTime.constant(),
|
|
"triSurface",
|
|
runTime,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
surf
|
|
);
|
|
|
|
|
|
// Internal and external closeness
|
|
|
|
// Prepare start and end points for intersection tests
|
|
|
|
const vectorField& normals = searchSurf.faceNormals();
|
|
|
|
scalar span = searchSurf.bounds().mag();
|
|
|
|
scalar externalAngleTolerance = 10;
|
|
scalar externalToleranceCosAngle =
|
|
Foam::cos
|
|
(
|
|
degToRad(180 - externalAngleTolerance)
|
|
);
|
|
|
|
scalar internalAngleTolerance = 45;
|
|
scalar internalToleranceCosAngle =
|
|
Foam::cos
|
|
(
|
|
degToRad(180 - internalAngleTolerance)
|
|
);
|
|
|
|
Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle
|
|
<< nl
|
|
<< "internalToleranceCosAngle: " << internalToleranceCosAngle
|
|
<< endl;
|
|
|
|
// Info<< "span " << span << endl;
|
|
|
|
pointField start(searchSurf.faceCentres() - span*normals);
|
|
pointField end(searchSurf.faceCentres() + span*normals);
|
|
const pointField& faceCentres = searchSurf.faceCentres();
|
|
|
|
List<List<pointIndexHit> > allHitInfo;
|
|
|
|
// Find all intersections (in order)
|
|
searchSurf.findLineAll(start, end, allHitInfo);
|
|
|
|
scalarField internalCloseness(start.size(), GREAT);
|
|
scalarField externalCloseness(start.size(), GREAT);
|
|
|
|
forAll(allHitInfo, fI)
|
|
{
|
|
const List<pointIndexHit>& hitInfo = allHitInfo[fI];
|
|
|
|
if (hitInfo.size() < 1)
|
|
{
|
|
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
|
|
|
|
// FatalErrorIn(args.executable())
|
|
// << "findLineAll did not hit its own face."
|
|
// << exit(FatalError);
|
|
}
|
|
else if (hitInfo.size() == 1)
|
|
{
|
|
if (!hitInfo[0].hit())
|
|
{
|
|
// FatalErrorIn(args.executable())
|
|
// << "findLineAll did not hit any face."
|
|
// << exit(FatalError);
|
|
}
|
|
else if (hitInfo[0].index() != fI)
|
|
{
|
|
drawHitProblem
|
|
(
|
|
fI,
|
|
surf,
|
|
start,
|
|
faceCentres,
|
|
end,
|
|
hitInfo
|
|
);
|
|
|
|
// FatalErrorIn(args.executable())
|
|
// << "findLineAll did not hit its own face."
|
|
// << exit(FatalError);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
label ownHitI = -1;
|
|
|
|
forAll(hitInfo, hI)
|
|
{
|
|
// Find the hit on the triangle that launched the ray
|
|
|
|
if (hitInfo[hI].index() == fI)
|
|
{
|
|
ownHitI = hI;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ownHitI < 0)
|
|
{
|
|
drawHitProblem
|
|
(
|
|
fI,
|
|
surf,
|
|
start,
|
|
faceCentres,
|
|
end,
|
|
hitInfo
|
|
);
|
|
|
|
// FatalErrorIn(args.executable())
|
|
// << "findLineAll did not hit its own face."
|
|
// << exit(FatalError);
|
|
}
|
|
else if (ownHitI == 0)
|
|
{
|
|
// There are no internal hits, the first hit is the
|
|
// closest external hit
|
|
|
|
if
|
|
(
|
|
(
|
|
normals[fI]
|
|
& normals[hitInfo[ownHitI + 1].index()]
|
|
)
|
|
< externalToleranceCosAngle
|
|
)
|
|
{
|
|
externalCloseness[fI] =
|
|
mag
|
|
(
|
|
faceCentres[fI]
|
|
- hitInfo[ownHitI + 1].hitPoint()
|
|
);
|
|
}
|
|
}
|
|
else if (ownHitI == hitInfo.size() - 1)
|
|
{
|
|
// There are no external hits, the last but one hit is
|
|
// the closest internal hit
|
|
|
|
if
|
|
(
|
|
(
|
|
normals[fI]
|
|
& normals[hitInfo[ownHitI - 1].index()]
|
|
)
|
|
< internalToleranceCosAngle
|
|
)
|
|
{
|
|
internalCloseness[fI] =
|
|
mag
|
|
(
|
|
faceCentres[fI]
|
|
- hitInfo[ownHitI - 1].hitPoint()
|
|
);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if
|
|
(
|
|
(
|
|
normals[fI]
|
|
& normals[hitInfo[ownHitI + 1].index()]
|
|
)
|
|
< externalToleranceCosAngle
|
|
)
|
|
{
|
|
externalCloseness[fI] =
|
|
mag
|
|
(
|
|
faceCentres[fI]
|
|
- hitInfo[ownHitI + 1].hitPoint()
|
|
);
|
|
}
|
|
|
|
if
|
|
(
|
|
(
|
|
normals[fI]
|
|
& normals[hitInfo[ownHitI - 1].index()]
|
|
)
|
|
< internalToleranceCosAngle
|
|
)
|
|
{
|
|
internalCloseness[fI] =
|
|
mag
|
|
(
|
|
faceCentres[fI]
|
|
- hitInfo[ownHitI - 1].hitPoint()
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
triSurfaceScalarField internalClosenessField
|
|
(
|
|
IOobject
|
|
(
|
|
sFeatFileName + ".internalCloseness",
|
|
runTime.constant(),
|
|
"triSurface",
|
|
runTime,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
surf,
|
|
dimLength,
|
|
internalCloseness
|
|
);
|
|
|
|
internalClosenessField.write();
|
|
|
|
triSurfaceScalarField externalClosenessField
|
|
(
|
|
IOobject
|
|
(
|
|
sFeatFileName + ".externalCloseness",
|
|
runTime.constant(),
|
|
"triSurface",
|
|
runTime,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
surf,
|
|
dimLength,
|
|
externalCloseness
|
|
);
|
|
|
|
externalClosenessField.write();
|
|
|
|
if (writeVTK)
|
|
{
|
|
vtkSurfaceWriter().write
|
|
(
|
|
runTime.constantPath()/"triSurface",// outputDir
|
|
sFeatFileName, // surfaceName
|
|
surf.points(),
|
|
faces,
|
|
"internalCloseness", // fieldName
|
|
internalCloseness,
|
|
false, // isNodeValues
|
|
true // verbose
|
|
);
|
|
|
|
vtkSurfaceWriter().write
|
|
(
|
|
runTime.constantPath()/"triSurface",// outputDir
|
|
sFeatFileName, // surfaceName
|
|
surf.points(),
|
|
faces,
|
|
"externalCloseness", // fieldName
|
|
externalCloseness,
|
|
false, // isNodeValues
|
|
true // verbose
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
if (curvature)
|
|
{
|
|
Info<< nl << "Extracting curvature of surface at the points."
|
|
<< endl;
|
|
|
|
vectorField pointNormals = calcVertexNormals(surf);
|
|
triadField pointCoordSys = calcVertexCoordSys(surf, pointNormals);
|
|
|
|
triSurfacePointScalarField k = calcCurvature
|
|
(
|
|
sFeatFileName,
|
|
runTime,
|
|
surf,
|
|
pointNormals,
|
|
pointCoordSys
|
|
);
|
|
|
|
k.write();
|
|
|
|
if (writeVTK)
|
|
{
|
|
vtkSurfaceWriter().write
|
|
(
|
|
runTime.constantPath()/"triSurface",// outputDir
|
|
sFeatFileName, // surfaceName
|
|
surf.points(),
|
|
faces,
|
|
"curvature", // fieldName
|
|
k,
|
|
true, // isNodeValues
|
|
true // verbose
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
if (featureProximity)
|
|
{
|
|
Info<< nl << "Extracting proximity of close feature points and "
|
|
<< "edges to the surface" << endl;
|
|
|
|
const scalar searchDistance =
|
|
readScalar(surfaceDict.lookup("maxFeatureProximity"));
|
|
|
|
scalarField featureProximity(surf.size(), searchDistance);
|
|
|
|
forAll(surf, fI)
|
|
{
|
|
const triPointRef& tri = surf[fI].tri(surf.points());
|
|
const point& triCentre = tri.circumCentre();
|
|
|
|
const scalar radiusSqr = min
|
|
(
|
|
sqr(4*tri.circumRadius()),
|
|
sqr(searchDistance)
|
|
);
|
|
|
|
List<pointIndexHit> hitList;
|
|
|
|
feMesh.allNearestFeatureEdges(triCentre, radiusSqr, hitList);
|
|
|
|
featureProximity[fI] =
|
|
calcProximityOfFeatureEdges
|
|
(
|
|
feMesh,
|
|
hitList,
|
|
featureProximity[fI]
|
|
);
|
|
|
|
feMesh.allNearestFeaturePoints(triCentre, radiusSqr, hitList);
|
|
|
|
featureProximity[fI] =
|
|
calcProximityOfFeaturePoints
|
|
(
|
|
hitList,
|
|
featureProximity[fI]
|
|
);
|
|
}
|
|
|
|
triSurfaceScalarField featureProximityField
|
|
(
|
|
IOobject
|
|
(
|
|
sFeatFileName + ".featureProximity",
|
|
runTime.constant(),
|
|
"triSurface",
|
|
runTime,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
surf,
|
|
dimLength,
|
|
featureProximity
|
|
);
|
|
|
|
featureProximityField.write();
|
|
|
|
if (writeVTK)
|
|
{
|
|
vtkSurfaceWriter().write
|
|
(
|
|
runTime.constantPath()/"triSurface",// outputDir
|
|
sFeatFileName, // surfaceName
|
|
surf.points(),
|
|
faces,
|
|
"featureProximity", // fieldName
|
|
featureProximity,
|
|
false, // isNodeValues
|
|
true // verbose
|
|
);
|
|
}
|
|
}
|
|
|
|
Info<< endl;
|
|
}
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|