openfoam/applications/test/matrices/DiagonalMatrix/Test-DiagonalMatrix.C
Mark Olesen 6320bab2b5 STYLE: IOstreams with float/double instead of floatScalar/doubleScalar
- consistent with defining IO of int32_t/int64_t and with recent
  changes to ensightFile. Using the primitives directly instead of
  typedefs to them makes the code somewhat less opaque.
2022-07-22 15:43:37 +02:00

231 lines
6.6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-DiagonalMatrix
Description
Tests for \c DiagonalMatrix constructors, member functions and global
functions using \c floatScalar, \c doubleScalar, and \c complex base types.
Cross-checks were obtained from 'NumPy 1.15.1' if no theoretical
cross-check exists (like eigendecomposition relations), and
were hard-coded for elementwise comparisons.
\*---------------------------------------------------------------------------*/
#include "DiagonalMatrix.H"
#include "RectangularMatrix.H"
#include "scalar.H"
#include "complex.H"
#include "TestTools.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Create each constructor of DiagonalMatrix<Type>, and print output
template<class Type>
void test_constructors(Type)
{
{
Info<< "# Construct empty from size:" << nl;
const DiagonalMatrix<Type> A(5);
Info<< A << endl;
}
{
Info<< "# Construct from size and initialise all elems to zero:" << nl;
const DiagonalMatrix<Type> A(5, Zero);
Info<< A << endl;
}
{
Info<< "# Construct from size and initialise all elems to value" << nl;
const DiagonalMatrix<Type> A(5, Type(8));
Info<< A << endl;
}
{
Info<< "# Construct from the diagonal of a Matrix" << nl;
const RectangularMatrix<Type> M(3, 5, Zero);
const DiagonalMatrix<Type> A(M);
Info<< A << endl;
}
}
// Execute each member function of DiagonalMatrix<Type>, and print output
template<class Type>
void test_member_funcs(Type)
{
DiagonalMatrix<Type> A(3, Zero);
assignMatrix(A, {Type(1), Type(2), Type(-3)});
Info<< "# Operand: " << nl
<< " DiagonalMatrix = " << A << endl;
{
Info<< "# Return the matrix inverse into itself:" << nl;
A.invert();
cmp
(
" DiagonalMatrix<Type>.invert() = ",
A,
List<Type>({Type(1), Type(0.5), Type(-0.333333)}),
1e-6
);
}
{
Info<< "# Sort:" << nl;
DiagonalMatrix<Type> B(5, Zero);
assignMatrix(B, {Type(1), Type(2), Type(-3), Type(5), Type(1.01)});
auto descend = [&](Type a, Type b){ return mag(a) > mag(b); };
const List<label> sortPermutation(B.sortPermutation(descend));
cmp
(
" Return a sort permutation labelList according to "
"a given comparison on the diagonal entries",
sortPermutation,
List<label>({3, 2, 1, 4, 0})
);
DiagonalMatrix<Type> sortedB0(5, Zero);
assignMatrix
(
sortedB0,
{
Type(5),
Type(-3),
Type(2),
Type(1.01),
Type(1)
}
);
const DiagonalMatrix<Type> sortedB1
(
applyPermutation(B, sortPermutation)
);
cmp
(
" Return Matrix column-reordered according to "
"a given permutation labelList",
sortedB0,
sortedB1
);
DiagonalMatrix<Type> cpB(B);
cpB.applyPermutation(sortPermutation);
cmp
(
" Column-reorder this Matrix according to "
"a given permutation labelList",
sortedB0,
cpB
);
}
}
// Execute each global function of DiagonalMatrix<Type>, and print output
template<class Type>
void test_global_funcs(Type)
{
DiagonalMatrix<Type> A(3, Zero);
assignMatrix(A, {Type(1), Type(2), Type(-3)});
Info<< "# Operand: " << nl
<< " DiagonalMatrix = " << A << nl << endl;
cmp
(
" Inverse = ",
inv(A),
List<Type>({Type(1), Type(0.5), Type(-0.333333)}),
1e-6
);
}
// Do compile-time recursion over the given types
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){}
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID)
{
Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl;
test_constructors(std::get<I>(types));
Info<< nl << " ## Test member functions: "<< typeID[I] <<" ##" << nl;
test_member_funcs(std::get<I>(types));
Info<< nl << " ## Test global functions: "<< typeID[I] << " ##" << nl;
test_global_funcs(std::get<I>(types));
run_tests<I + 1, Tp...>(types, typeID);
}
// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * //
int main()
{
const std::tuple<floatScalar, doubleScalar, complex> types
(
std::make_tuple(Zero, Zero, Zero)
);
const List<word> typeID
({
"DiagonalMatrix<floatScalar>",
"DiagonalMatrix<doubleScalar>",
"DiagonalMatrix<complex>"
});
run_tests(types, typeID);
if (nFail_)
{
Info<< nl << " #### "
<< "Failed in " << nFail_ << " tests "
<< "out of total " << nTest_ << " tests "
<< "####\n" << endl;
return 1;
}
Info<< nl << " #### Passed all " << nTest_ <<" tests ####\n" << endl;
return 0;
}
// ************************************************************************* //