openfoam/applications/solvers/heatTransfer/buoyantSimpleRadiationFoam/buoyantSimpleRadiationFoam.C
Henry 63da3e9afc Thermodynamics: Rationalization
At the specie level:
    hs = sensible enthalpy
    ha = absolute (what was total) enthalpy
    es = sensibly internal energy
    ea = absolute (what was total) internal energy

At top-level
    Rename total enthalpy h -> ha
    Rename sensible enthalpy hs -> h

Combined h, hs, e and es thermo packages into a single structure.

Thermo packages now provide "he" function which may return either enthalpy or
internal energy, sensible or absolute according to the run-time selected form

alphaEff now returns the effective diffusivity for the particular energy which
the thermodynamics package is selected to solve for.
2012-05-30 15:19:38 +01:00

85 lines
2.6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
buoyantSimpleRadiationFoam
Description
Steady-state solver for buoyant, turbulent flow of compressible fluids,
including radiation, for ventilation and heat-transfer.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "psiThermo.H"
#include "RASModel.H"
#include "fixedGradientFvPatchFields.H"
#include "radiationModel.H"
#include "simpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readGravitationalAcceleration.H"
#include "createFields.H"
#include "createRadiationModel.H"
#include "initContinuityErrs.H"
simpleControl simple(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
{
#include "UEqn.H"
#include "hEqn.H"
#include "pEqn.H"
}
turbulence->correct();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //