At the specie level: hs = sensible enthalpy ha = absolute (what was total) enthalpy es = sensibly internal energy ea = absolute (what was total) internal energy At top-level Rename total enthalpy h -> ha Rename sensible enthalpy hs -> h Combined h, hs, e and es thermo packages into a single structure. Thermo packages now provide "he" function which may return either enthalpy or internal energy, sensible or absolute according to the run-time selected form alphaEff now returns the effective diffusivity for the particular energy which the thermodynamics package is selected to solve for.
85 lines
2.6 KiB
C
85 lines
2.6 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
buoyantSimpleRadiationFoam
|
|
|
|
Description
|
|
Steady-state solver for buoyant, turbulent flow of compressible fluids,
|
|
including radiation, for ventilation and heat-transfer.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "psiThermo.H"
|
|
#include "RASModel.H"
|
|
#include "fixedGradientFvPatchFields.H"
|
|
#include "radiationModel.H"
|
|
#include "simpleControl.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
#include "createMesh.H"
|
|
#include "readGravitationalAcceleration.H"
|
|
#include "createFields.H"
|
|
#include "createRadiationModel.H"
|
|
#include "initContinuityErrs.H"
|
|
|
|
simpleControl simple(mesh);
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< "\nStarting time loop\n" << endl;
|
|
|
|
while (simple.loop())
|
|
{
|
|
Info<< "Time = " << runTime.timeName() << nl << endl;
|
|
|
|
// Pressure-velocity SIMPLE corrector
|
|
{
|
|
#include "UEqn.H"
|
|
#include "hEqn.H"
|
|
#include "pEqn.H"
|
|
}
|
|
|
|
turbulence->correct();
|
|
|
|
runTime.write();
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
}
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|