At the specie level: hs = sensible enthalpy ha = absolute (what was total) enthalpy es = sensibly internal energy ea = absolute (what was total) internal energy At top-level Rename total enthalpy h -> ha Rename sensible enthalpy hs -> h Combined h, hs, e and es thermo packages into a single structure. Thermo packages now provide "he" function which may return either enthalpy or internal energy, sensible or absolute according to the run-time selected form alphaEff now returns the effective diffusivity for the particular energy which the thermodynamics package is selected to solve for.
107 lines
2.5 KiB
C
107 lines
2.5 KiB
C
Info<< "Creating combustion model\n" << endl;
|
|
|
|
autoPtr<combustionModels::rhoChemistryCombustionModel> combustion
|
|
(
|
|
combustionModels::rhoChemistryCombustionModel::New
|
|
(
|
|
mesh
|
|
)
|
|
);
|
|
|
|
rhoChemistryModel& chemistry = combustion->pChemistry();
|
|
|
|
rhoReactionThermo& thermo = chemistry.thermo();
|
|
|
|
SLGThermo slgThermo(mesh, thermo);
|
|
|
|
basicMultiComponentMixture& composition = thermo.composition();
|
|
PtrList<volScalarField>& Y = composition.Y();
|
|
|
|
const word inertSpecie(thermo.lookup("inertSpecie"));
|
|
|
|
if (!composition.contains(inertSpecie))
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "Specified inert specie '" << inertSpecie << "' not found in "
|
|
<< "species list. Available species:" << composition.species()
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
volScalarField& p = thermo.p();
|
|
volScalarField& hs = thermo.he();
|
|
const volScalarField& T = thermo.T();
|
|
const volScalarField& psi = thermo.psi();
|
|
|
|
volScalarField rho
|
|
(
|
|
IOobject
|
|
(
|
|
"rho",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
thermo.rho()
|
|
);
|
|
|
|
Info<< "\nReading field U\n" << endl;
|
|
volVectorField U
|
|
(
|
|
IOobject
|
|
(
|
|
"U",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh
|
|
);
|
|
|
|
#include "compressibleCreatePhi.H"
|
|
|
|
Info<< "Creating turbulence model\n" << endl;
|
|
autoPtr<compressible::turbulenceModel> turbulence
|
|
(
|
|
compressible::turbulenceModel::New
|
|
(
|
|
rho,
|
|
U,
|
|
phi,
|
|
thermo
|
|
)
|
|
);
|
|
|
|
// Set the turbulence into the combustion model
|
|
combustion->setTurbulence(turbulence());
|
|
|
|
Info<< "Creating multi-variate interpolation scheme\n" << endl;
|
|
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
|
|
|
|
forAll(Y, i)
|
|
{
|
|
fields.add(Y[i]);
|
|
}
|
|
fields.add(hs);
|
|
|
|
volScalarField dQ
|
|
(
|
|
IOobject
|
|
(
|
|
"dQ",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh,
|
|
dimensionedScalar("dQ", dimEnergy/dimTime, 0.0)
|
|
);
|
|
|
|
Info<< "Creating field dpdt\n" << endl;
|
|
volScalarField dpdt("dpdt", fvc::ddt(p));
|
|
|
|
Info<< "Creating field kinetic energy K\n" << endl;
|
|
volScalarField K("K", 0.5*magSqr(U));
|