Adds overset discretisation to selected physics: - diffusion : overLaplacianDyMFoam - incompressible steady : overSimpleFoam - incompressible transient : overPimpleDyMFoam - compressible transient: overRhoPimpleDyMFoam - two-phase VOF: overInterDyMFoam The overset method chosen is a parallel, fully implicit implementation whereby the interpolation (from donor to acceptor) is inserted as an adapted discretisation on the donor cells, such that the resulting matrix can be solved using the standard linear solvers. Above solvers come with a set of tutorials, showing how to create and set-up simple simulations from scratch.
71 lines
1.6 KiB
C++
71 lines
1.6 KiB
C++
/*--------------------------------*- C++ -*----------------------------------*\
|
|
| ========= | |
|
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|
|
| \\ / O peration | Version: 2.3.0 |
|
|
| \\ / A nd | Web: www.OpenFOAM.org |
|
|
| \\/ M anipulation | |
|
|
\*---------------------------------------------------------------------------*/
|
|
FoamFile
|
|
{
|
|
version 2.0;
|
|
format ascii;
|
|
class dictionary;
|
|
location "system";
|
|
object fvSchemes;
|
|
}
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
ddtSchemes
|
|
{
|
|
default Euler;
|
|
}
|
|
|
|
gradSchemes
|
|
{
|
|
default Gauss linear;
|
|
}
|
|
|
|
divSchemes
|
|
{
|
|
div(rhoPhi,U) Gauss limitedLinearV 1;
|
|
div(U) Gauss linear;
|
|
div(phi,alpha) Gauss vanLeer;
|
|
div(phirb,alpha) Gauss linear;
|
|
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
|
|
|
|
div(phi,k) Gauss upwind;
|
|
div(phi,epsilon) Gauss upwind;
|
|
div(phi,omega) Gauss upwind;
|
|
}
|
|
|
|
laplacianSchemes
|
|
{
|
|
default Gauss linear corrected;
|
|
}
|
|
|
|
interpolationSchemes
|
|
{
|
|
default linear;
|
|
}
|
|
|
|
snGradSchemes
|
|
{
|
|
default corrected;
|
|
}
|
|
|
|
oversetInterpolation
|
|
{
|
|
method inverseDistance;
|
|
}
|
|
|
|
fluxRequired
|
|
{
|
|
default no;
|
|
p_rgh;
|
|
pcorr;
|
|
alpha.water;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|