openfoam/applications/utilities/mesh/manipulation/checkMesh/writeFields.C

457 lines
12 KiB
C

#include "writeFields.H"
#include "volFields.H"
#include "polyMeshTools.H"
#include "zeroGradientFvPatchFields.H"
#include "syncTools.H"
#include "tetPointRef.H"
#include "regionSplit.H"
using namespace Foam;
void maxFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = -GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = max(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
void minFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = min(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
void Foam::writeFields
(
const fvMesh& mesh,
const wordHashSet& selectedFields
)
{
if (selectedFields.empty())
{
return;
}
Info<< "Writing fields with mesh quality parameters" << endl;
if (selectedFields.found("nonOrthoAngle"))
{
//- Face based orthogonality
const scalarField faceOrthogonality
(
polyMeshTools::faceOrthogonality
(
mesh,
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Face based angle
const scalarField nonOrthoAngle
(
radToDeg
(
Foam::acos(min(scalar(1.0), faceOrthogonality))
)
);
//- Cell field - max of either face
volScalarField cellNonOrthoAngle
(
IOobject
(
"nonOrthoAngle",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("angle", dimless, 0),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(nonOrthoAngle, cellNonOrthoAngle);
Info<< " Writing non-orthogonality (angle) to "
<< cellNonOrthoAngle.name() << endl;
cellNonOrthoAngle.write();
}
if (selectedFields.found("faceWeight"))
{
const scalarField faceWeights
(
polyMeshTools::faceWeights
(
mesh,
mesh.faceCentres(),
mesh.faceAreas(),
mesh.cellCentres()
)
);
volScalarField cellWeights
(
IOobject
(
"faceWeight",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("weight", dimless, 0),
calculatedFvPatchScalarField::typeName
);
//- Take min
minFaceToCell(faceWeights, cellWeights);
Info<< " Writing face interpolation weights (0..0.5) to "
<< cellWeights.name() << endl;
cellWeights.write();
}
// Skewness
// ~~~~~~~~
if (selectedFields.found("skewness"))
{
//- Face based skewness
const scalarField faceSkewness
(
polyMeshTools::faceSkewness
(
mesh,
mesh.points(),
mesh.faceCentres(),
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Cell field - max of either face
volScalarField cellSkewness
(
IOobject
(
"skewness",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("skewness", dimless, 0),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(faceSkewness, cellSkewness);
Info<< " Writing face skewness to " << cellSkewness.name() << endl;
cellSkewness.write();
}
// cellDeterminant
// ~~~~~~~~~~~~~~~
if (selectedFields.found("cellDeterminant"))
{
volScalarField cellDeterminant
(
IOobject
(
"cellDeterminant",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("cellDeterminant", dimless, 0),
zeroGradientFvPatchScalarField::typeName
);
cellDeterminant.primitiveFieldRef() =
primitiveMeshTools::cellDeterminant
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
syncTools::getInternalOrCoupledFaces(mesh)
);
cellDeterminant.correctBoundaryConditions();
Info<< " Writing cell determinant to "
<< cellDeterminant.name() << endl;
cellDeterminant.write();
}
// Aspect ratio
// ~~~~~~~~~~~~
if (selectedFields.found("aspectRatio"))
{
volScalarField aspectRatio
(
IOobject
(
"aspectRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("aspectRatio", dimless, 0),
zeroGradientFvPatchScalarField::typeName
);
scalarField cellOpenness;
polyMeshTools::cellClosedness
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
mesh.cellVolumes(),
cellOpenness,
aspectRatio.ref()
);
aspectRatio.correctBoundaryConditions();
Info<< " Writing aspect ratio to " << aspectRatio.name() << endl;
aspectRatio.write();
}
// cell type
// ~~~~~~~~~
if (selectedFields.found("cellShapes"))
{
volScalarField shape
(
IOobject
(
"cellShapes",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("cellShapes", dimless, 0),
zeroGradientFvPatchScalarField::typeName
);
const cellShapeList& cellShapes = mesh.cellShapes();
forAll(cellShapes, cellI)
{
const cellModel& model = cellShapes[cellI].model();
shape[cellI] = model.index();
}
shape.correctBoundaryConditions();
Info<< " Writing cell shape (hex, tet etc.) to " << shape.name()
<< endl;
shape.write();
}
if (selectedFields.found("cellVolume"))
{
volScalarField V
(
IOobject
(
"cellVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("cellVolume", dimVolume, 0),
calculatedFvPatchScalarField::typeName
);
V.ref() = mesh.V();
Info<< " Writing cell volume to " << V.name() << endl;
V.write();
}
if (selectedFields.found("cellVolumeRatio"))
{
const scalarField faceVolumeRatio
(
polyMeshTools::volRatio
(
mesh,
mesh.V()
)
);
volScalarField cellVolumeRatio
(
IOobject
(
"cellVolumeRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("cellVolumeRatio", dimless, 0),
calculatedFvPatchScalarField::typeName
);
//- Take min
minFaceToCell(faceVolumeRatio, cellVolumeRatio);
Info<< " Writing cell volume ratio to "
<< cellVolumeRatio.name() << endl;
cellVolumeRatio.write();
}
// minTetVolume
if (selectedFields.found("minTetVolume"))
{
volScalarField minTetVolume
(
IOobject
(
"minTetVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minTetVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const pointField& p = mesh.points();
forAll(own, facei)
{
const face& f = mesh.faces()[facei];
const point& fc = mesh.faceCentres()[facei];
{
const point& ownCc = mesh.cellCentres()[own[facei]];
scalar& ownVol = minTetVolume[own[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
ownCc,
fc
).quality();
ownVol = min(ownVol, tetQual);
}
}
if (mesh.isInternalFace(facei))
{
const point& neiCc = mesh.cellCentres()[nei[facei]];
scalar& neiVol = minTetVolume[nei[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc,
neiCc
).quality();
neiVol = min(neiVol, tetQual);
}
}
}
minTetVolume.correctBoundaryConditions();
Info<< " Writing minTetVolume to " << minTetVolume.name() << endl;
minTetVolume.write();
}
if (selectedFields.found("cellRegion"))
{
volScalarField cellRegion
(
IOobject
(
"cellRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("cellRegion", dimless, 0),
calculatedFvPatchScalarField::typeName
);
regionSplit rs(mesh);
forAll(rs, celli)
{
cellRegion[celli] = rs[celli];
}
cellRegion.correctBoundaryConditions();
Info<< " Writing cell region to " << cellRegion.name() << endl;
cellRegion.write();
}
Info<< endl;
}