openfoam/src/lagrangian/basic/particle/particleTemplates.C

583 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2016-2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "IOPosition.H"
#include "cyclicPolyPatch.H"
#include "cyclicAMIPolyPatch.H"
#include "cyclicACMIPolyPatch.H"
#include "processorPolyPatch.H"
#include "symmetryPlanePolyPatch.H"
#include "symmetryPolyPatch.H"
#include "wallPolyPatch.H"
#include "wedgePolyPatch.H"
#include "meshTools.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::particle::writePropertyName
(
Ostream& os,
const word& name,
const word& delim
)
{
if (pTraits<Type>::nComponents == 1)
{
os << name;
}
else
{
os << '(';
for (int i = 0; i < pTraits<Type>::nComponents; ++i)
{
if (i) os << delim;
os << name << Foam::name(i);
}
os << ')';
}
}
template<class Type>
void Foam::particle::writeProperty
(
Ostream& os,
const word& name,
const Type& value,
const bool nameOnly,
const word& delim,
const wordRes& filters
)
{
if (!filters.empty() && !filters.match(name))
{
return;
}
os << delim;
if (nameOnly)
{
writePropertyName<Type>(os, name, delim);
}
else
{
os << value;
}
}
template<class Type>
void Foam::particle::writeProperty
(
Ostream& os,
const word& name,
const Field<Type>& values,
const bool nameOnly,
const word& delim,
const wordRes& filters
)
{
if (!filters.empty() && !filters.match(name))
{
return;
}
if (nameOnly)
{
os << delim;
os << "N(";
if (values.size())
{
forAll(values, i)
{
if (i) os << delim;
const word tag(name + Foam::name(i));
writePropertyName<Type>(os, tag, delim);
}
}
else
{
os << name;
}
os << ')';
}
else
{
os << delim << values;
}
}
template<class TrackCloudType>
void Foam::particle::readFields(TrackCloudType& c)
{
const bool valid = c.size();
IOobject procIO(c.fieldIOobject("origProcId", IOobject::MUST_READ));
const bool haveFile = procIO.typeHeaderOk<IOField<label>>(true);
IOField<label> origProcId(procIO, valid && haveFile);
c.checkFieldIOobject(c, origProcId);
IOField<label> origId
(
c.fieldIOobject("origId", IOobject::MUST_READ),
valid && haveFile
);
c.checkFieldIOobject(c, origId);
label i = 0;
for (particle& p : c)
{
p.origProc_ = origProcId[i];
p.origId_ = origId[i];
++i;
}
}
template<class TrackCloudType>
void Foam::particle::writeFields(const TrackCloudType& c)
{
const label np = c.size();
const bool valid = np;
if (writeLagrangianCoordinates)
{
IOPosition<TrackCloudType> ioP(c);
ioP.write(valid);
}
else if (!writeLagrangianPositions)
{
FatalErrorInFunction
<< "Must select coordinates and/or positions" << nl
<< exit(FatalError);
}
// Optionally write positions file in v1706 format and earlier
if (writeLagrangianPositions)
{
IOPosition<TrackCloudType> ioP
(
c,
cloud::geometryType::POSITIONS
);
ioP.write(valid);
}
IOField<label> origProc
(
c.fieldIOobject("origProcId", IOobject::NO_READ),
np
);
IOField<label> origId
(
c.fieldIOobject("origId", IOobject::NO_READ),
np
);
label i = 0;
for (const particle& p : c)
{
origProc[i] = p.origProc_;
origId[i] = p.origId_;
++i;
}
origProc.write(valid);
origId.write(valid);
}
template<class CloudType>
void Foam::particle::readObjects(CloudType& c, const objectRegistry& obr)
{
typedef typename CloudType::parcelType parcelType;
const auto* positionPtr = cloud::findIOPosition(obr);
const label np = c.size();
const label newNp = (positionPtr ? positionPtr->size() : 0);
// Remove excess parcels
for (label i = newNp; i < np; ++i)
{
parcelType* p = c.last();
c.deleteParticle(*p);
}
if (newNp)
{
const auto& position = *positionPtr;
const auto& origProcId = cloud::lookupIOField<label>("origProc", obr);
const auto& origId = cloud::lookupIOField<label>("origId", obr);
// Create new parcels
for (label i = np; i < newNp; ++i)
{
c.addParticle(new parcelType(c.pMesh(), position[i], -1));
}
label i = 0;
for (particle& p : c)
{
p.origProc_ = origProcId[i];
p.origId_ = origId[i];
if (i < np)
{
// Use relocate for old particles, not new ones
p.relocate(position[i]);
}
++i;
}
}
}
template<class CloudType>
void Foam::particle::writeObjects(const CloudType& c, objectRegistry& obr)
{
const label np = c.size();
auto& origProc = cloud::createIOField<label>("origProc", np, obr);
auto& origId = cloud::createIOField<label>("origId", np, obr);
auto& position = cloud::createIOField<point>("position", np, obr);
label i = 0;
for (const particle& p : c)
{
origProc[i] = p.origProc_;
origId[i] = p.origId_;
position[i] = p.position();
++i;
}
}
template<class TrackCloudType>
void Foam::particle::hitFace
(
const vector& direction,
TrackCloudType& cloud,
trackingData& td
)
{
typename TrackCloudType::particleType& p =
static_cast<typename TrackCloudType::particleType&>(*this);
typename TrackCloudType::particleType::trackingData& ttd =
static_cast<typename TrackCloudType::particleType::trackingData&>(td);
if (!onFace())
{
return;
}
else if (onInternalFace())
{
changeCell();
}
else if (onBoundaryFace())
{
changeToMasterPatch();
if (!p.hitPatch(cloud, ttd))
{
const polyPatch& patch = mesh_.boundaryMesh()[p.patch()];
if (isA<wedgePolyPatch>(patch))
{
p.hitWedgePatch(cloud, ttd);
}
else if (isA<symmetryPlanePolyPatch>(patch))
{
p.hitSymmetryPlanePatch(cloud, ttd);
}
else if (isA<symmetryPolyPatch>(patch))
{
p.hitSymmetryPatch(cloud, ttd);
}
else if (isA<cyclicPolyPatch>(patch))
{
p.hitCyclicPatch(cloud, ttd);
}
else if (isA<cyclicACMIPolyPatch>(patch))
{
p.hitCyclicACMIPatch(cloud, ttd, direction);
}
else if (isA<cyclicAMIPolyPatch>(patch))
{
p.hitCyclicAMIPatch(cloud, ttd, direction);
}
else if (isA<processorPolyPatch>(patch))
{
p.hitProcessorPatch(cloud, ttd);
}
else if (isA<wallPolyPatch>(patch))
{
p.hitWallPatch(cloud, ttd);
}
else
{
td.keepParticle = false;
}
}
}
}
template<class TrackCloudType>
void Foam::particle::trackToAndHitFace
(
const vector& direction,
const scalar fraction,
TrackCloudType& cloud,
trackingData& td
)
{
trackToFace(direction, fraction);
hitFace(direction, cloud, td);
}
template<class TrackCloudType>
bool Foam::particle::hitPatch(TrackCloudType&, trackingData&)
{
return false;
}
template<class TrackCloudType>
void Foam::particle::hitWedgePatch(TrackCloudType& cloud, trackingData& td)
{
FatalErrorInFunction
<< "Hitting a wedge patch should not be possible."
<< abort(FatalError);
hitSymmetryPatch(cloud, td);
}
template<class TrackCloudType>
void Foam::particle::hitSymmetryPlanePatch
(
TrackCloudType& cloud,
trackingData& td
)
{
hitSymmetryPatch(cloud, td);
}
template<class TrackCloudType>
void Foam::particle::hitSymmetryPatch(TrackCloudType&, trackingData&)
{
const vector nf = normal();
transformProperties(I - 2.0*nf*nf);
}
template<class TrackCloudType>
void Foam::particle::hitCyclicPatch(TrackCloudType&, trackingData&)
{
const cyclicPolyPatch& cpp =
static_cast<const cyclicPolyPatch&>(mesh_.boundaryMesh()[patch()]);
const cyclicPolyPatch& receiveCpp = cpp.neighbPatch();
const label receiveFacei = receiveCpp.whichFace(facei_);
// Set the topology
facei_ = tetFacei_ = cpp.transformGlobalFace(facei_);
celli_ = mesh_.faceOwner()[facei_];
// See note in correctAfterParallelTransfer for tetPti addressing ...
tetPti_ = mesh_.faces()[tetFacei_].size() - 1 - tetPti_;
// Reflect to account for the change of triangle orientation in the new cell
reflect();
// Transform the properties
if (!receiveCpp.parallel())
{
const tensor& T =
(
receiveCpp.forwardT().size() == 1
? receiveCpp.forwardT()[0]
: receiveCpp.forwardT()[receiveFacei]
);
transformProperties(T);
}
else if (receiveCpp.separated())
{
const vector& s =
(
(receiveCpp.separation().size() == 1)
? receiveCpp.separation()[0]
: receiveCpp.separation()[receiveFacei]
);
transformProperties(-s);
}
}
template<class TrackCloudType>
void Foam::particle::hitCyclicAMIPatch
(
TrackCloudType&,
trackingData& td,
const vector& direction
)
{
vector pos = position();
const cyclicAMIPolyPatch& cpp =
static_cast<const cyclicAMIPolyPatch&>(mesh_.boundaryMesh()[patch()]);
const cyclicAMIPolyPatch& receiveCpp = cpp.neighbPatch();
const label sendFacei = cpp.whichFace(facei_);
const label receiveFacei = cpp.pointFace(sendFacei, direction, pos);
if (receiveFacei < 0)
{
// If the patch face of the particle is not known assume that the
// particle is lost and mark it to be deleted.
td.keepParticle = false;
WarningInFunction
<< "Particle lost across " << cyclicAMIPolyPatch::typeName
<< " patches " << cpp.name() << " and " << receiveCpp.name()
<< " at position " << pos << endl;
}
// Set the topology
facei_ = tetFacei_ = receiveFacei + receiveCpp.start();
// Locate the particle on the receiving side
vector directionT = direction;
cpp.reverseTransformDirection(directionT, sendFacei);
locate
(
pos,
&directionT,
mesh_.faceOwner()[facei_],
false,
"Particle crossed between " + cyclicAMIPolyPatch::typeName +
" patches " + cpp.name() + " and " + receiveCpp.name() +
" to a location outside of the mesh."
);
// The particle must remain associated with a face for the tracking to
// register as incomplete
facei_ = tetFacei_;
// Transform the properties
if (!receiveCpp.parallel())
{
const tensor& T =
(
receiveCpp.forwardT().size() == 1
? receiveCpp.forwardT()[0]
: receiveCpp.forwardT()[receiveFacei]
);
transformProperties(T);
}
else if (receiveCpp.separated())
{
const vector& s =
(
(receiveCpp.separation().size() == 1)
? receiveCpp.separation()[0]
: receiveCpp.separation()[receiveFacei]
);
transformProperties(-s);
}
}
template<class TrackCloudType>
void Foam::particle::hitCyclicACMIPatch
(
TrackCloudType& cloud,
trackingData& td,
const vector& direction
)
{
const cyclicACMIPolyPatch& cpp =
static_cast<const cyclicACMIPolyPatch&>(mesh_.boundaryMesh()[patch()]);
const label localFacei = cpp.whichFace(facei_);
// If the mask is within the patch tolerance at either end, then we can
// assume an interaction with the appropriate part of the ACMI pair.
const scalar mask = cpp.mask()[localFacei];
bool couple = mask >= 1 - cpp.tolerance();
bool nonOverlap = mask <= cpp.tolerance();
// If the mask is an intermediate value, then we search for a location on
// the other side of the AMI. If we can't find a location, then we assume
// that we have hit the non-overlap patch.
if (!couple && !nonOverlap)
{
vector pos = position();
couple = cpp.pointFace(localFacei, direction, pos) >= 0;
nonOverlap = !couple;
}
if (couple)
{
hitCyclicAMIPatch(cloud, td, direction);
}
else
{
// Move to the face associated with the non-overlap patch and redo the
// face interaction.
tetFacei_ = facei_ = cpp.nonOverlapPatch().start() + localFacei;
hitFace(direction, cloud, td);
}
}
template<class TrackCloudType>
void Foam::particle::hitProcessorPatch(TrackCloudType&, trackingData&)
{}
template<class TrackCloudType>
void Foam::particle::hitWallPatch(TrackCloudType&, trackingData&)
{}
// ************************************************************************* //