openfoam/src/mesh/autoMesh/autoHexMesh/autoHexMeshDriver/autoSnapDriver.C

1579 lines
44 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Description
All to do with snapping to the surface
\*----------------------------------------------------------------------------*/
#include "autoSnapDriver.H"
#include "motionSmoother.H"
#include "polyTopoChange.H"
#include "syncTools.H"
#include "fvMesh.H"
#include "Time.H"
#include "OFstream.H"
#include "mapPolyMesh.H"
#include "pointEdgePoint.H"
#include "PointEdgeWave.H"
#include "mergePoints.H"
#include "snapParameters.H"
#include "refinementSurfaces.H"
#include "unitConversion.H"
#include "localPointRegion.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(autoSnapDriver, 0);
} // End namespace Foam
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Calculate geometrically collocated points, Requires PackedList to be
// sized and initalised!
Foam::label Foam::autoSnapDriver::getCollocatedPoints
(
const scalar tol,
const pointField& points,
PackedBoolList& isCollocatedPoint
)
{
labelList pointMap;
label nUnique = mergePoints
(
points, // points
tol, // mergeTol
false, // verbose
pointMap
);
bool hasMerged = (nUnique < points.size());
if (!returnReduce(hasMerged, orOp<bool>()))
{
return 0;
}
// Determine which merged points are referenced more than once
label nCollocated = 0;
// Per old point the newPoint. Or -1 (not set yet) or -2 (already seen
// twice)
labelList firstOldPoint(nUnique, -1);
forAll(pointMap, oldPointI)
{
label newPointI = pointMap[oldPointI];
if (firstOldPoint[newPointI] == -1)
{
// First use of oldPointI. Store.
firstOldPoint[newPointI] = oldPointI;
}
else if (firstOldPoint[newPointI] == -2)
{
// Third or more reference of oldPointI -> non-manifold
isCollocatedPoint.set(oldPointI, 1u);
nCollocated++;
}
else
{
// Second reference of oldPointI -> non-manifold
isCollocatedPoint.set(firstOldPoint[newPointI], 1u);
nCollocated++;
isCollocatedPoint.set(oldPointI, 1u);
nCollocated++;
// Mark with special value to save checking next time round
firstOldPoint[newPointI] = -2;
}
}
return returnReduce(nCollocated, sumOp<label>());
}
// Calculate displacement as average of patch points.
Foam::pointField Foam::autoSnapDriver::smoothPatchDisplacement
(
const motionSmoother& meshMover,
const List<labelPair>& baffles
) const
{
const indirectPrimitivePatch& pp = meshMover.patch();
// Calculate geometrically non-manifold points on the patch to be moved.
PackedBoolList nonManifoldPoint(pp.nPoints());
label nNonManifoldPoints = getCollocatedPoints
(
SMALL,
pp.localPoints(),
nonManifoldPoint
);
Info<< "Found " << nNonManifoldPoints << " non-mainfold point(s)."
<< endl;
// Average points
// ~~~~~~~~~~~~~~
// We determine three points:
// - average of (centres of) connected patch faces
// - average of (centres of) connected internal mesh faces
// - as fallback: centre of any connected cell
// so we can do something moderately sensible for non/manifold points.
// Note: the averages are calculated properly parallel. This is
// necessary to get the points shared by processors correct.
const labelListList& pointFaces = pp.pointFaces();
const labelList& meshPoints = pp.meshPoints();
const pointField& points = pp.points();
const polyMesh& mesh = meshMover.mesh();
// Get labels of faces to count (master of coupled faces and baffle pairs)
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh));
{
forAll(baffles, i)
{
label f0 = baffles[i].first();
label f1 = baffles[i].second();
if (isMasterFace.get(f0))
{
// Make f1 a slave
isMasterFace.unset(f1);
}
else if (isMasterFace.get(f1))
{
isMasterFace.unset(f0);
}
else
{
FatalErrorIn("autoSnapDriver::smoothPatchDisplacement(..)")
<< "Both sides of baffle consisting of faces " << f0
<< " and " << f1 << " are already slave faces."
<< abort(FatalError);
}
}
}
// Get average position of boundary face centres
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
vectorField avgBoundary(pointFaces.size(), vector::zero);
labelList nBoundary(pointFaces.size(), 0);
forAll(pointFaces, patchPointI)
{
const labelList& pFaces = pointFaces[patchPointI];
forAll(pFaces, pfI)
{
label faceI = pFaces[pfI];
if (isMasterFace.get(pp.addressing()[faceI]))
{
avgBoundary[patchPointI] += pp[faceI].centre(points);
nBoundary[patchPointI]++;
}
}
}
syncTools::syncPointList
(
mesh,
pp.meshPoints(),
avgBoundary,
plusEqOp<point>(), // combine op
vector::zero // null value
);
syncTools::syncPointList
(
mesh,
pp.meshPoints(),
nBoundary,
plusEqOp<label>(), // combine op
label(0) // null value
);
forAll(avgBoundary, i)
{
avgBoundary[i] /= nBoundary[i];
}
// Get average position of internal face centres
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
vectorField avgInternal;
labelList nInternal;
{
vectorField globalSum(mesh.nPoints(), vector::zero);
labelList globalNum(mesh.nPoints(), 0);
// Note: no use of pointFaces
const faceList& faces = mesh.faces();
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
const face& f = faces[faceI];
const point& fc = mesh.faceCentres()[faceI];
forAll(f, fp)
{
globalSum[f[fp]] += fc;
globalNum[f[fp]]++;
}
}
// Count coupled faces as internal ones (but only once)
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAll(patches, patchI)
{
if
(
patches[patchI].coupled()
&& refCast<const coupledPolyPatch>(patches[patchI]).owner()
)
{
const coupledPolyPatch& pp =
refCast<const coupledPolyPatch>(patches[patchI]);
const vectorField::subField faceCentres = pp.faceCentres();
forAll(pp, i)
{
const face& f = pp[i];
const point& fc = faceCentres[i];
forAll(f, fp)
{
globalSum[f[fp]] += fc;
globalNum[f[fp]]++;
}
}
}
}
syncTools::syncPointList
(
mesh,
globalSum,
plusEqOp<vector>(), // combine op
vector::zero // null value
);
syncTools::syncPointList
(
mesh,
globalNum,
plusEqOp<label>(), // combine op
label(0) // null value
);
avgInternal.setSize(meshPoints.size());
nInternal.setSize(meshPoints.size());
forAll(avgInternal, patchPointI)
{
label meshPointI = meshPoints[patchPointI];
nInternal[patchPointI] = globalNum[meshPointI];
if (nInternal[patchPointI] == 0)
{
avgInternal[patchPointI] = globalSum[meshPointI];
}
else
{
avgInternal[patchPointI] =
globalSum[meshPointI]
/ nInternal[patchPointI];
}
}
}
// Precalculate any cell using mesh point (replacement of pointCells()[])
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
labelList anyCell(mesh.nPoints(), -1);
forAll(mesh.faceNeighbour(), faceI)
{
label own = mesh.faceOwner()[faceI];
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
anyCell[f[fp]] = own;
}
}
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
label own = mesh.faceOwner()[faceI];
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
anyCell[f[fp]] = own;
}
}
// Displacement to calculate.
pointField patchDisp(meshPoints.size(), vector::zero);
forAll(pointFaces, i)
{
label meshPointI = meshPoints[i];
const point& currentPos = pp.points()[meshPointI];
// Now we have the two average points: avgBoundary and avgInternal
// and how many boundary/internal faces connect to the point
// (nBoundary, nInternal)
// Do some blending between the two.
// Note: the following section has some reasoning behind it but the
// blending factors can be experimented with.
point newPos;
if (!nonManifoldPoint.get(i))
{
// Points that are manifold. Weight the internal and boundary
// by their number of faces and blend with
scalar internalBlend = 0.1;
scalar blend = 0.1;
point avgPos =
(
internalBlend*nInternal[i]*avgInternal[i]
+(1-internalBlend)*nBoundary[i]*avgBoundary[i]
)
/ (internalBlend*nInternal[i]+(1-internalBlend)*nBoundary[i]);
newPos = (1-blend)*avgPos + blend*currentPos;
}
else if (nInternal[i] == 0)
{
// Non-manifold without internal faces. Use any connected cell
// as internal point instead. Use precalculated any cell to avoid
// e.g. pointCells()[meshPointI][0]
const point& cc = mesh.cellCentres()[anyCell[meshPointI]];
scalar cellCBlend = 0.8;
scalar blend = 0.1;
point avgPos = (1-cellCBlend)*avgBoundary[i] + cellCBlend*cc;
newPos = (1-blend)*avgPos + blend*currentPos;
}
else
{
// Non-manifold point with internal faces connected to them
scalar internalBlend = 0.9;
scalar blend = 0.1;
point avgPos =
internalBlend*avgInternal[i]
+ (1-internalBlend)*avgBoundary[i];
newPos = (1-blend)*avgPos + blend*currentPos;
}
patchDisp[i] = newPos - currentPos;
}
return patchDisp;
}
Foam::tmp<Foam::scalarField> Foam::autoSnapDriver::edgePatchDist
(
const pointMesh& pMesh,
const indirectPrimitivePatch& pp
)
{
const polyMesh& mesh = pMesh();
// Set initial changed points to all the patch points
List<pointEdgePoint> wallInfo(pp.nPoints());
forAll(pp.localPoints(), ppI)
{
wallInfo[ppI] = pointEdgePoint(pp.localPoints()[ppI], 0.0);
}
// Current info on points
List<pointEdgePoint> allPointInfo(mesh.nPoints());
// Current info on edges
List<pointEdgePoint> allEdgeInfo(mesh.nEdges());
PointEdgeWave<pointEdgePoint> wallCalc
(
mesh,
pp.meshPoints(),
wallInfo,
allPointInfo,
allEdgeInfo,
mesh.globalData().nTotalPoints() // max iterations
);
// Copy edge values into scalarField
tmp<scalarField> tedgeDist(new scalarField(mesh.nEdges()));
scalarField& edgeDist = tedgeDist();
forAll(allEdgeInfo, edgeI)
{
edgeDist[edgeI] = Foam::sqrt(allEdgeInfo[edgeI].distSqr());
}
//{
// // For debugging: dump to file
// pointScalarField pointDist
// (
// IOobject
// (
// "pointDist",
// meshRefiner_.timeName(),
// mesh.DB(),
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// pMesh,
// dimensionedScalar("pointDist", dimless, 0.0)
// );
//
// forAll(allEdgeInfo, edgeI)
// {
// scalar d = Foam::sqrt(allEdgeInfo[edgeI].distSqr());
//
// const edge& e = mesh.edges()[edgeI];
//
// pointDist[e[0]] += d;
// pointDist[e[1]] += d;
// }
// forAll(pointDist, pointI)
// {
// pointDist[pointI] /= mesh.pointEdges()[pointI].size();
// }
// Info<< "Writing patch distance to " << pointDist.name()
// << " at time " << meshRefiner_.timeName() << endl;
//
// pointDist.write();
//}
return tedgeDist;
}
void Foam::autoSnapDriver::dumpMove
(
const fileName& fName,
const pointField& meshPts,
const pointField& surfPts
)
{
// Dump direction of growth into file
Info<< "Dumping move direction to " << fName << endl;
OFstream nearestStream(fName);
label vertI = 0;
forAll(meshPts, ptI)
{
meshTools::writeOBJ(nearestStream, meshPts[ptI]);
vertI++;
meshTools::writeOBJ(nearestStream, surfPts[ptI]);
vertI++;
nearestStream<< "l " << vertI-1 << ' ' << vertI << nl;
}
}
// Check whether all displacement vectors point outwards of patch. Return true
// if so.
bool Foam::autoSnapDriver::outwardsDisplacement
(
const indirectPrimitivePatch& pp,
const vectorField& patchDisp
)
{
const vectorField& faceNormals = pp.faceNormals();
const labelListList& pointFaces = pp.pointFaces();
forAll(pointFaces, pointI)
{
const labelList& pFaces = pointFaces[pointI];
vector disp(patchDisp[pointI]);
scalar magDisp = mag(disp);
if (magDisp > SMALL)
{
disp /= magDisp;
bool outwards = meshTools::visNormal(disp, faceNormals, pFaces);
if (!outwards)
{
Warning<< "Displacement " << patchDisp[pointI]
<< " at mesh point " << pp.meshPoints()[pointI]
<< " coord " << pp.points()[pp.meshPoints()[pointI]]
<< " points through the surrounding patch faces" << endl;
return false;
}
}
else
{
//? Displacement small but in wrong direction. Would probably be ok.
}
}
return true;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::autoSnapDriver::autoSnapDriver
(
meshRefinement& meshRefiner,
const labelList& globalToPatch
)
:
meshRefiner_(meshRefiner),
globalToPatch_(globalToPatch)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::autoPtr<Foam::mapPolyMesh> Foam::autoSnapDriver::mergeZoneBaffles
(
const List<labelPair>& baffles
)
{
labelList zonedSurfaces = meshRefiner_.surfaces().getNamedSurfaces();
autoPtr<mapPolyMesh> map;
// No need to sync; all processors will have all same zonedSurfaces.
label nBaffles = returnReduce(baffles.size(), sumOp<label>());
if (zonedSurfaces.size() && nBaffles > 0)
{
// Merge any baffles
Info<< "Converting " << nBaffles << " baffles back into zoned faces ..."
<< endl;
map = meshRefiner_.mergeBaffles(baffles);
Info<< "Converted baffles in = "
<< meshRefiner_.mesh().time().cpuTimeIncrement()
<< " s\n" << nl << endl;
}
return map;
}
Foam::scalarField Foam::autoSnapDriver::calcSnapDistance
(
const snapParameters& snapParams,
const indirectPrimitivePatch& pp
) const
{
const edgeList& edges = pp.edges();
const labelListList& pointEdges = pp.pointEdges();
const pointField& localPoints = pp.localPoints();
const fvMesh& mesh = meshRefiner_.mesh();
scalarField maxEdgeLen(localPoints.size(), -GREAT);
forAll(pointEdges, pointI)
{
const labelList& pEdges = pointEdges[pointI];
forAll(pEdges, pEdgeI)
{
const edge& e = edges[pEdges[pEdgeI]];
scalar len = e.mag(localPoints);
maxEdgeLen[pointI] = max(maxEdgeLen[pointI], len);
}
}
syncTools::syncPointList
(
mesh,
pp.meshPoints(),
maxEdgeLen,
maxEqOp<scalar>(), // combine op
-GREAT // null value
);
return scalarField(snapParams.snapTol()*maxEdgeLen);
}
void Foam::autoSnapDriver::preSmoothPatch
(
const snapParameters& snapParams,
const label nInitErrors,
const List<labelPair>& baffles,
motionSmoother& meshMover
) const
{
const fvMesh& mesh = meshRefiner_.mesh();
labelList checkFaces;
Info<< "Smoothing patch points ..." << endl;
for
(
label smoothIter = 0;
smoothIter < snapParams.nSmoothPatch();
smoothIter++
)
{
Info<< "Smoothing iteration " << smoothIter << endl;
checkFaces.setSize(mesh.nFaces());
forAll(checkFaces, faceI)
{
checkFaces[faceI] = faceI;
}
pointField patchDisp(smoothPatchDisplacement(meshMover, baffles));
// The current mesh is the starting mesh to smooth from.
meshMover.setDisplacement(patchDisp);
meshMover.correct();
scalar oldErrorReduction = -1;
for (label snapIter = 0; snapIter < 2*snapParams.nSnap(); snapIter++)
{
Info<< nl << "Scaling iteration " << snapIter << endl;
if (snapIter == snapParams.nSnap())
{
Info<< "Displacement scaling for error reduction set to 0."
<< endl;
oldErrorReduction = meshMover.setErrorReduction(0.0);
}
// Try to adapt mesh to obtain displacement by smoothly
// decreasing displacement at error locations.
if (meshMover.scaleMesh(checkFaces, baffles, true, nInitErrors))
{
Info<< "Successfully moved mesh" << endl;
break;
}
}
if (oldErrorReduction >= 0)
{
meshMover.setErrorReduction(oldErrorReduction);
}
Info<< endl;
}
// The current mesh is the starting mesh to smooth from.
meshMover.correct();
if (debug&meshRefinement::MESH)
{
const_cast<Time&>(mesh.time())++;
Info<< "Writing patch smoothed mesh to time "
<< meshRefiner_.timeName() << '.' << endl;
meshRefiner_.write
(
debug,
mesh.time().path()/meshRefiner_.timeName()
);
Info<< "Dumped mesh in = "
<< mesh.time().cpuTimeIncrement() << " s\n" << nl << endl;
}
Info<< "Patch points smoothed in = "
<< mesh.time().cpuTimeIncrement() << " s\n" << nl << endl;
}
// Get (pp-local) indices of points that are both on zone and on patched surface
Foam::labelList Foam::autoSnapDriver::getZoneSurfacePoints
(
const indirectPrimitivePatch& pp,
const word& zoneName
) const
{
const fvMesh& mesh = meshRefiner_.mesh();
label zoneI = mesh.faceZones().findZoneID(zoneName);
if (zoneI == -1)
{
FatalErrorIn
(
"autoSnapDriver::getZoneSurfacePoints"
"(const indirectPrimitivePatch&, const word&)"
) << "Cannot find zone " << zoneName
<< exit(FatalError);
}
const faceZone& fZone = mesh.faceZones()[zoneI];
// Could use PrimitivePatch & localFaces to extract points but might just
// as well do it ourselves.
boolList pointOnZone(pp.nPoints(), false);
forAll(fZone, i)
{
const face& f = mesh.faces()[fZone[i]];
forAll(f, fp)
{
label meshPointI = f[fp];
Map<label>::const_iterator iter =
pp.meshPointMap().find(meshPointI);
if (iter != pp.meshPointMap().end())
{
label pointI = iter();
pointOnZone[pointI] = true;
}
}
}
return findIndices(pointOnZone, true);
}
Foam::vectorField Foam::autoSnapDriver::calcNearestSurface
(
const scalarField& snapDist,
motionSmoother& meshMover
) const
{
Info<< "Calculating patchDisplacement as distance to nearest surface"
<< " point ..." << endl;
const indirectPrimitivePatch& pp = meshMover.patch();
const pointField& localPoints = pp.localPoints();
const refinementSurfaces& surfaces = meshRefiner_.surfaces();
const fvMesh& mesh = meshRefiner_.mesh();
// Displacement per patch point
vectorField patchDisp(localPoints.size(), vector::zero);
if (returnReduce(localPoints.size(), sumOp<label>()) > 0)
{
// Current surface snapped to
labelList snapSurf(localPoints.size(), -1);
// Divide surfaces into zoned and unzoned
labelList zonedSurfaces =
meshRefiner_.surfaces().getNamedSurfaces();
labelList unzonedSurfaces =
meshRefiner_.surfaces().getUnnamedSurfaces();
// 1. All points to non-interface surfaces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{
List<pointIndexHit> hitInfo;
labelList hitSurface;
surfaces.findNearest
(
unzonedSurfaces,
localPoints,
sqr(snapDist), // sqr of attract distance
hitSurface,
hitInfo
);
forAll(hitInfo, pointI)
{
if (hitInfo[pointI].hit())
{
patchDisp[pointI] =
hitInfo[pointI].hitPoint()
- localPoints[pointI];
snapSurf[pointI] = hitSurface[pointI];
}
}
}
// 2. All points on zones to their respective surface
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Surfaces with zone information
const wordList& faceZoneNames = surfaces.faceZoneNames();
// Current best snap distance
scalarField minSnapDist(snapDist);
forAll(zonedSurfaces, i)
{
label zoneSurfI = zonedSurfaces[i];
const labelList surfacesToTest(1, zoneSurfI);
// Get indices of points both on faceZone and on pp.
labelList zonePointIndices
(
getZoneSurfacePoints
(
pp,
faceZoneNames[zoneSurfI]
)
);
// Find nearest for points both on faceZone and pp.
List<pointIndexHit> hitInfo;
labelList hitSurface;
surfaces.findNearest
(
labelList(1, zoneSurfI),
pointField(localPoints, zonePointIndices),
sqr(scalarField(minSnapDist, zonePointIndices)),
hitSurface,
hitInfo
);
forAll(hitInfo, i)
{
label pointI = zonePointIndices[i];
if (hitInfo[i].hit())
{
patchDisp[pointI] =
hitInfo[i].hitPoint()
- localPoints[pointI];
minSnapDist[pointI] = min
(
minSnapDist[pointI],
mag(patchDisp[pointI])
);
snapSurf[pointI] = zoneSurfI;
}
}
}
// Check if all points are being snapped
forAll(snapSurf, pointI)
{
if (snapSurf[pointI] == -1)
{
WarningIn("autoSnapDriver::calcNearestSurface(..)")
<< "For point:" << pointI
<< " coordinate:" << localPoints[pointI]
<< " did not find any surface within:"
<< minSnapDist[pointI]
<< " meter." << endl;
}
}
{
scalarField magDisp(mag(patchDisp));
Info<< "Wanted displacement : average:"
<< gSum(magDisp)/returnReduce(patchDisp.size(), sumOp<label>())
<< " min:" << gMin(magDisp)
<< " max:" << gMax(magDisp) << endl;
}
}
Info<< "Calculated surface displacement in = "
<< mesh.time().cpuTimeIncrement() << " s\n" << nl << endl;
// Limit amount of movement.
forAll(patchDisp, patchPointI)
{
scalar magDisp = mag(patchDisp[patchPointI]);
if (magDisp > snapDist[patchPointI])
{
patchDisp[patchPointI] *= snapDist[patchPointI] / magDisp;
Pout<< "Limiting displacement for " << patchPointI
<< " from " << magDisp << " to " << snapDist[patchPointI]
<< endl;
}
}
// Points on zones in one domain but only present as point on other
// will not do condition 2 on all. Sync explicitly.
syncTools::syncPointList
(
mesh,
pp.meshPoints(),
patchDisp,
minMagSqrEqOp<point>(), // combine op
vector(GREAT, GREAT, GREAT) // null value (note: cannot use VGREAT)
);
return patchDisp;
}
void Foam::autoSnapDriver::smoothDisplacement
(
const snapParameters& snapParams,
motionSmoother& meshMover
) const
{
const fvMesh& mesh = meshRefiner_.mesh();
const indirectPrimitivePatch& pp = meshMover.patch();
Info<< "Smoothing displacement ..." << endl;
// Set edge diffusivity as inverse of distance to patch
scalarField edgeGamma(1.0/(edgePatchDist(meshMover.pMesh(), pp) + SMALL));
//scalarField edgeGamma(mesh.nEdges(), 1.0);
//scalarField edgeGamma(wallGamma(mesh, pp, 10, 1));
// Get displacement field
pointVectorField& disp = meshMover.displacement();
for (label iter = 0; iter < snapParams.nSmoothDispl(); iter++)
{
if ((iter % 10) == 0)
{
Info<< "Iteration " << iter << endl;
}
pointVectorField oldDisp(disp);
meshMover.smooth(oldDisp, edgeGamma, disp);
}
Info<< "Displacement smoothed in = "
<< mesh.time().cpuTimeIncrement() << " s\n" << nl << endl;
if (debug&meshRefinement::MESH)
{
const_cast<Time&>(mesh.time())++;
Info<< "Writing smoothed mesh to time " << meshRefiner_.timeName()
<< endl;
// Moving mesh creates meshPhi. Can be cleared out by a mesh.clearOut
// but this will also delete all pointMesh but not pointFields which
// gives an illegal situation.
meshRefiner_.write
(
debug,
mesh.time().path()/meshRefiner_.timeName()
);
Info<< "Writing displacement field ..." << endl;
disp.write();
tmp<pointScalarField> magDisp(mag(disp));
magDisp().write();
Info<< "Writing actual patch displacement ..." << endl;
vectorField actualPatchDisp(disp, pp.meshPoints());
dumpMove
(
mesh.time().path()
/ "actualPatchDisplacement_" + meshRefiner_.timeName() + ".obj",
pp.localPoints(),
pp.localPoints() + actualPatchDisp
);
}
}
bool Foam::autoSnapDriver::scaleMesh
(
const snapParameters& snapParams,
const label nInitErrors,
const List<labelPair>& baffles,
motionSmoother& meshMover
)
{
const fvMesh& mesh = meshRefiner_.mesh();
// Relax displacement until correct mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
labelList checkFaces(identity(mesh.nFaces()));
scalar oldErrorReduction = -1;
bool meshOk = false;
Info<< "Moving mesh ..." << endl;
for (label iter = 0; iter < 2*snapParams.nSnap(); iter++)
{
Info<< nl << "Iteration " << iter << endl;
if (iter == snapParams.nSnap())
{
Info<< "Displacement scaling for error reduction set to 0." << endl;
oldErrorReduction = meshMover.setErrorReduction(0.0);
}
meshOk = meshMover.scaleMesh(checkFaces, baffles, true, nInitErrors);
if (meshOk)
{
Info<< "Successfully moved mesh" << endl;
break;
}
if (debug&meshRefinement::MESH)
{
const_cast<Time&>(mesh.time())++;
Info<< "Writing scaled mesh to time " << meshRefiner_.timeName()
<< endl;
mesh.write();
Info<< "Writing displacement field ..." << endl;
meshMover.displacement().write();
tmp<pointScalarField> magDisp(mag(meshMover.displacement()));
magDisp().write();
}
}
if (oldErrorReduction >= 0)
{
meshMover.setErrorReduction(oldErrorReduction);
}
Info<< "Moved mesh in = "
<< mesh.time().cpuTimeIncrement() << " s\n" << nl << endl;
return meshOk;
}
// After snapping: correct patching according to nearest surface.
// Code is very similar to calcNearestSurface.
// - calculate face-wise snap distance as max of point-wise
// - calculate face-wise nearest surface point
// - repatch face according to patch for surface point.
Foam::autoPtr<Foam::mapPolyMesh> Foam::autoSnapDriver::repatchToSurface
(
const snapParameters& snapParams,
const labelList& adaptPatchIDs
)
{
const fvMesh& mesh = meshRefiner_.mesh();
const refinementSurfaces& surfaces = meshRefiner_.surfaces();
Info<< "Repatching faces according to nearest surface ..." << endl;
// Get the labels of added patches.
autoPtr<indirectPrimitivePatch> ppPtr
(
meshRefinement::makePatch
(
mesh,
adaptPatchIDs
)
);
indirectPrimitivePatch& pp = ppPtr();
// Divide surfaces into zoned and unzoned
labelList zonedSurfaces = surfaces.getNamedSurfaces();
labelList unzonedSurfaces = surfaces.getUnnamedSurfaces();
// Faces that do not move
PackedBoolList isZonedFace(mesh.nFaces());
{
// 1. All faces on zoned surfaces
const wordList& faceZoneNames = surfaces.faceZoneNames();
const faceZoneMesh& fZones = mesh.faceZones();
forAll(zonedSurfaces, i)
{
const label zoneSurfI = zonedSurfaces[i];
const faceZone& fZone = fZones[faceZoneNames[zoneSurfI]];
forAll(fZone, i)
{
isZonedFace.set(fZone[i], 1);
}
}
}
// Determine per pp face which patch it should be in
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Patch that face should be in
labelList closestPatch(pp.size(), -1);
{
// face snap distance as max of point snap distance
scalarField faceSnapDist(pp.size(), -GREAT);
{
// Distance to attract to nearest feature on surface
const scalarField snapDist(calcSnapDistance(snapParams, pp));
const faceList& localFaces = pp.localFaces();
forAll(localFaces, faceI)
{
const face& f = localFaces[faceI];
forAll(f, fp)
{
faceSnapDist[faceI] = max
(
faceSnapDist[faceI],
snapDist[f[fp]]
);
}
}
}
pointField localFaceCentres(mesh.faceCentres(), pp.addressing());
// Get nearest surface and region
labelList hitSurface;
labelList hitRegion;
surfaces.findNearestRegion
(
unzonedSurfaces,
localFaceCentres,
sqr(faceSnapDist), // sqr of attract distance
hitSurface,
hitRegion
);
// Get patch
forAll(pp, i)
{
label faceI = pp.addressing()[i];
if (hitSurface[i] != -1 && !isZonedFace.get(faceI))
{
closestPatch[i] = globalToPatch_
[
surfaces.globalRegion
(
hitSurface[i],
hitRegion[i]
)
];
}
}
}
// Change those faces for which there is a different closest patch
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
labelList ownPatch(mesh.nFaces(), -1);
labelList neiPatch(mesh.nFaces(), -1);
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
forAll(pp, i)
{
ownPatch[pp.start()+i] = patchI;
neiPatch[pp.start()+i] = patchI;
}
}
label nChanged = 0;
forAll(closestPatch, i)
{
label faceI = pp.addressing()[i];
if (closestPatch[i] != -1 && closestPatch[i] != ownPatch[faceI])
{
ownPatch[faceI] = closestPatch[i];
neiPatch[faceI] = closestPatch[i];
nChanged++;
}
}
Info<< "Repatched " << returnReduce(nChanged, sumOp<label>())
<< " faces in = " << mesh.time().cpuTimeIncrement() << " s\n" << nl
<< endl;
return meshRefiner_.createBaffles(ownPatch, neiPatch);
}
void Foam::autoSnapDriver::doSnap
(
const dictionary& snapDict,
const dictionary& motionDict,
const scalar featureCos,
const snapParameters& snapParams
)
{
fvMesh& mesh = meshRefiner_.mesh();
Info<< nl
<< "Morphing phase" << nl
<< "--------------" << nl
<< endl;
// Get the labels of added patches.
labelList adaptPatchIDs(meshRefiner_.meshedPatches());
// Create baffles (pairs of faces that share the same points)
// Baffles stored as owner and neighbour face that have been created.
List<labelPair> baffles;
meshRefiner_.createZoneBaffles(globalToPatch_, baffles);
// Selectively 'forget' about the baffles, i.e. not check across them
// or merge across them.
{
const faceZoneMesh& fZones = mesh.faceZones();
const refinementSurfaces& surfaces = meshRefiner_.surfaces();
const wordList& faceZoneNames = surfaces.faceZoneNames();
const List<refinementSurfaces::faceZoneType>& faceType =
surfaces.faceType();
// Determine which
// - faces to remove from list of baffles (so not merge)
// - points to duplicate
labelList filterFace(mesh.nFaces(), -1);
label nFilterFaces = 0;
PackedBoolList duplicatePoint(mesh.nPoints());
label nDuplicatePoints = 0;
forAll(faceZoneNames, surfI)
{
if
(
faceType[surfI] == refinementSurfaces::BAFFLE
|| faceType[surfI] == refinementSurfaces::BOUNDARY
)
{
if (faceZoneNames[surfI].size())
{
// Filter out all faces for this zone.
label zoneI = fZones.findZoneID(faceZoneNames[surfI]);
const faceZone& fZone = fZones[zoneI];
forAll(fZone, i)
{
label faceI = fZone[i];
filterFace[faceI] = zoneI;
nFilterFaces++;
}
if (faceType[surfI] == refinementSurfaces::BOUNDARY)
{
forAll(fZone, i)
{
label faceI = fZone[i];
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
if (!duplicatePoint[f[fp]])
{
duplicatePoint[f[fp]] = 1;
nDuplicatePoints++;
}
}
}
}
Info<< "Surface : " << surfaces.names()[surfI] << nl
<< " faces to become baffle : "
<< returnReduce(nFilterFaces, sumOp<label>()) << nl
<< " points to duplicate : "
<< returnReduce(nDuplicatePoints, sumOp<label>())
<< endl;
}
}
}
// Duplicate points
if (returnReduce(nDuplicatePoints, sumOp<label>()) > 0)
{
// Collect all points
labelList candidatePoints(nDuplicatePoints);
nDuplicatePoints = 0;
forAll(duplicatePoint, pointI)
{
if (duplicatePoint[pointI])
{
candidatePoints[nDuplicatePoints++] = pointI;
}
}
localPointRegion regionSide(mesh, candidatePoints);
autoPtr<mapPolyMesh> mapPtr = meshRefiner_.dupNonManifoldPoints
(
regionSide
);
meshRefinement::updateList(mapPtr().faceMap(), -1, filterFace);
}
// Forget about baffles in a BAFFLE/BOUNDARY type zone
DynamicList<labelPair> newBaffles(baffles.size());
forAll(baffles, i)
{
const labelPair& baffle = baffles[i];
if
(
filterFace[baffle.first()] == -1
&& filterFace[baffles[i].second()] == -1
)
{
newBaffles.append(baffle);
}
}
if (newBaffles.size() < baffles.size())
{
//Info<< "Splitting baffles into" << nl
// << " internal : " << newBaffles.size() << nl
// << " baffle : " << baffles.size()-newBaffles.size()
// << nl << endl;
baffles.transfer(newBaffles);
}
Info<< endl;
}
bool doFeatures = false;
label nFeatIter = 1;
if (snapParams.nFeatureSnap() > 0)
{
doFeatures = true;
nFeatIter = snapParams.nFeatureSnap();
Info<< "Snapping to features in " << nFeatIter
<< " iterations ..." << endl;
}
bool meshOk = false;
{
autoPtr<indirectPrimitivePatch> ppPtr
(
meshRefinement::makePatch
(
mesh,
adaptPatchIDs
)
);
indirectPrimitivePatch& pp = ppPtr();
// Distance to attract to nearest feature on surface
const scalarField snapDist(calcSnapDistance(snapParams, pp));
// Construct iterative mesh mover.
Info<< "Constructing mesh displacer ..." << endl;
Info<< "Using mesh parameters " << motionDict << nl << endl;
const pointMesh& pMesh = pointMesh::New(mesh);
motionSmoother meshMover
(
mesh,
pp,
adaptPatchIDs,
meshRefinement::makeDisplacementField(pMesh, adaptPatchIDs),
motionDict
);
// Check initial mesh
Info<< "Checking initial mesh ..." << endl;
labelHashSet wrongFaces(mesh.nFaces()/100);
motionSmoother::checkMesh(false, mesh, motionDict, wrongFaces);
const label nInitErrors = returnReduce
(
wrongFaces.size(),
sumOp<label>()
);
Info<< "Detected " << nInitErrors << " illegal faces"
<< " (concave, zero area or negative cell pyramid volume)"
<< endl;
Info<< "Checked initial mesh in = "
<< mesh.time().cpuTimeIncrement() << " s\n" << nl << endl;
// Pre-smooth patch vertices (so before determining nearest)
preSmoothPatch(snapParams, nInitErrors, baffles, meshMover);
for (label iter = 0; iter < nFeatIter; iter++)
{
Info<< nl
<< "Morph iteration " << iter << nl
<< "-----------------" << endl;
// Calculate displacement at every patch point. Insert into
// meshMover.
vectorField disp = calcNearestSurface(snapDist, meshMover);
// Override displacement with feature edge attempt
if (doFeatures)
{
disp = calcNearestSurfaceFeature
(
snapParams,
iter,
featureCos,
scalar(iter+1)/nFeatIter,
snapDist,
disp,
meshMover
);
}
// Check for displacement being outwards.
outwardsDisplacement(pp, disp);
// Set initial distribution of displacement field (on patches)
// from patchDisp and make displacement consistent with b.c.
// on displacement pointVectorField.
meshMover.setDisplacement(disp);
if (debug&meshRefinement::OBJINTERSECTIONS)
{
dumpMove
(
mesh.time().path()
/ "patchDisplacement_" + name(iter) + ".obj",
pp.localPoints(),
pp.localPoints() + disp
);
}
// Get smoothly varying internal displacement field.
smoothDisplacement(snapParams, meshMover);
// Apply internal displacement to mesh.
meshOk = scaleMesh
(
snapParams,
nInitErrors,
baffles,
meshMover
);
if (!meshOk)
{
Info<< "Did not succesfully snap mesh. Giving up."
<< nl << endl;
// Use current mesh as base mesh
meshMover.correct();
break;
}
if (debug&meshRefinement::MESH)
{
const_cast<Time&>(mesh.time())++;
Info<< "Writing scaled mesh to time "
<< meshRefiner_.timeName() << endl;
meshRefiner_.write
(
debug,
mesh.time().path()/meshRefiner_.timeName()
);
Info<< "Writing displacement field ..." << endl;
meshMover.displacement().write();
tmp<pointScalarField> magDisp(mag(meshMover.displacement()));
magDisp().write();
}
// Use current mesh as base mesh
meshMover.correct();
}
}
// Merge any introduced baffles.
mergeZoneBaffles(baffles);
// Repatch faces according to nearest.
repatchToSurface(snapParams, adaptPatchIDs);
// Repatching might have caused faces to be on same patch and hence
// mergeable so try again to merge coplanar faces
label nChanged = meshRefiner_.mergePatchFacesUndo
(
featureCos, // minCos
featureCos, // concaveCos
meshRefiner_.meshedPatches(),
motionDict
);
nChanged += meshRefiner_.mergeEdgesUndo
(
featureCos,
motionDict
);
if (nChanged > 0 && debug&meshRefinement::MESH)
{
const_cast<Time&>(mesh.time())++;
Info<< "Writing patchFace merged mesh to time "
<< meshRefiner_.timeName() << endl;
meshRefiner_.write
(
debug,
meshRefiner_.timeName()
);
}
}
// ************************************************************************* //