openfoam/src/randomProcesses/noise/noiseModels/surfaceNoise/surfaceNoise.C
Mark Olesen 779a2ca084 ENH: adjust fileName methods for similarity to std::filesystem::path
- stem(), replace_name(), replace_ext(), remove_ext() etc

- string::contains() method - similar to C++23 method

  Eg,
      if (keyword.contains('/')) ...
  vs
      if (keyword.find('/') != std::string::npos) ...
2022-10-11 17:58:22 +02:00

880 lines
25 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2015-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "surfaceNoise.H"
#include "surfaceReader.H"
#include "surfaceWriter.H"
#include "argList.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace noiseModels
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(surfaceNoise, 0);
addToRunTimeSelectionTable(noiseModel, surfaceNoise, dictionary);
// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //
void surfaceNoise::initialise(const fileName& fName)
{
Info<< "Reading data file " << fName << endl;
instantList allTimes;
label nAvailableTimes = 0;
// All reading performed on the master processor only
if (Pstream::master())
{
// Create the surface reader
readerPtr_ = surfaceReader::New(readerType_, fName);
// Find the index of the pressure data
const wordList fieldNames(readerPtr_->fieldNames(0));
pIndex_ = fieldNames.find(pName_);
if (pIndex_ == -1)
{
FatalErrorInFunction
<< "Unable to find pressure field name " << pName_
<< " in list of available fields: " << fieldNames
<< exit(FatalError);
}
// Create the surface writer
// - Could be done later, but since this utility can process a lot of
// data we can ensure that the user-input is correct prior to doing
// the heavy lifting
// Set the time range
allTimes = readerPtr_->times();
startTimeIndex_ = instant::findStart(allTimes, startTime_);
// Determine the windowing
nAvailableTimes = allTimes.size() - startTimeIndex_;
}
Pstream::broadcasts
(
UPstream::worldComm,
pIndex_,
startTimeIndex_,
nAvailableTimes
);
// Note: all processors should call the windowing validate function
label nRequiredTimes = windowModelPtr_->validate(nAvailableTimes);
if (Pstream::master())
{
// Restrict times
times_.setSize(nRequiredTimes);
forAll(times_, timeI)
{
times_[timeI] = allTimes[timeI + startTimeIndex_].value();
}
deltaT_ = checkUniformTimeStep(times_);
// Read the surface geometry
// Note: hard-coded to read mesh from first time index
const meshedSurface& surf = readerPtr_->geometry(0);
nFace_ = surf.nFaces();
}
Pstream::broadcasts
(
UPstream::worldComm,
times_,
deltaT_,
nFace_
);
}
void surfaceNoise::readSurfaceData
(
const labelList& procFaceOffset,
List<scalarField>& pData
)
{
// Data is stored as pressure on surface at a given time. Now we need to
// pivot the data so that we have the complete pressure time history per
// surface face. In serial mode, this results in all pressure data being
// loaded into memory (!)
Info << "Reading pressure data" << endl;
if (Pstream::parRun())
{
PstreamBuffers pBufs(Pstream::commsTypes::nonBlocking);
// Procedure:
// 1. Master processor reads pressure data for all faces for all times
// 2. Master sends each processor a subset of faces
// 3. Local processor reconstructs the full time history for the subset
// of faces
// Note: reading all data on master to avoid potential NFS problems...
const label myProcI = Pstream::myProcNo();
const label nLocalFace =
procFaceOffset[myProcI + 1] - procFaceOffset[myProcI];
// Complete pressure time history data for subset of faces
pData.setSize(nLocalFace);
const label nTimes = times_.size();
for (scalarField& pf : pData)
{
pf.setSize(nTimes);
}
// Read and send data
forAll(times_, i)
{
pBufs.clear();
if (Pstream::master())
{
label timeI = i + startTimeIndex_;
Info<< " time: " << times_[i] << endl;
// Read pressure at all faces for time timeI
scalarField p(readerPtr_->field(timeI, pIndex_, scalar(0)));
// Apply conversions
p *= rhoRef_;
// Send subset of faces to each processor
for (const int procI : Pstream::allProcs())
{
label face0 = procFaceOffset[procI];
label nLocalFace =
procFaceOffset[procI + 1] - procFaceOffset[procI];
UOPstream toProc(procI, pBufs);
toProc << SubList<scalar>(p, nLocalFace, face0);
}
}
pBufs.finishedScatters();
// Receive data from the master
UIPstream fromProc(Pstream::masterNo(), pBufs);
scalarList pSlice(fromProc);
forAll(pSlice, faceI)
{
pData[faceI][i] = pSlice[faceI];
}
}
forAll(pData, faceI)
{
pData[faceI] -= average(pData[faceI]);
}
}
else
{
const label nLocalFace = procFaceOffset[0];
pData.setSize(nLocalFace);
for (scalarField& pf : pData)
{
pf.setSize(times_.size());
}
forAll(times_, i)
{
label timeI = i + startTimeIndex_;
Info<< " time: " << times_[i] << endl;
scalarField p(readerPtr_->field(timeI, pIndex_, scalar(0)));
// Apply conversions
p *= rhoRef_;
forAll(p, faceI)
{
pData[faceI][i] = p[faceI];
}
}
forAll(pData, faceI)
{
pData[faceI] -= average(pData[faceI]);
}
}
Info<< "Read "
<< returnReduce(pData.size(), sumOp<label>())
<< " pressure traces with "
<< times_.size()
<< " time values" << nl << endl;
}
scalar surfaceNoise::writeSurfaceData
(
const fileName& outDirBase,
const word& fName,
const word& title,
const scalar freq,
const scalarField& data,
const labelList& procFaceOffset,
const bool writeSurface
) const
{
Info<< " processing " << title << " for frequency " << freq << endl;
const instant freqInst(freq, Foam::name(freq));
if (Pstream::parRun())
{
// Collect the surface data so that we can output the surfaces
PstreamBuffers pBufs(Pstream::commsTypes::nonBlocking);
if (!Pstream::master())
{
UOPstream toProc(Pstream::masterNo(), pBufs);
toProc << data;
}
pBufs.finishedGathers();
scalar areaAverage = 0;
if (Pstream::master())
{
// Note: hard-coded to read mesh from first time index
const meshedSurface& surf = readerPtr_->geometry(0);
scalarField allData(surf.size());
forAll(data, faceI)
{
// Master procFaceOffset is zero...
allData[faceI] = data[faceI];
}
for (const int procI : Pstream::subProcs())
{
UIPstream fromProc(procI, pBufs);
scalarList dataSlice(fromProc);
forAll(dataSlice, i)
{
label faceI = procFaceOffset[procI] + i;
allData[faceI] = dataSlice[i];
}
}
if (writeSurface)
{
// Time-aware, with time spliced into the output path
writerPtr_->beginTime(freqInst);
writerPtr_->open
(
surf.points(),
surf.surfFaces(),
(outDirBase / fName),
false // serial - already merged
);
writerPtr_->nFields(1); // Legacy VTK
writerPtr_->write(title, allData);
writerPtr_->endTime();
writerPtr_->clear();
}
if (areaAverage_)
{
areaAverage = sum(allData*surf.magSf())/sum(surf.magSf());
}
else
{
areaAverage = sum(allData)/(allData.size() + ROOTVSMALL);
}
}
Pstream::broadcast(areaAverage);
return areaAverage;
}
else
{
// Note: hard-coded to read mesh from first time index
const meshedSurface& surf = readerPtr_->geometry(0);
if (writeSurface)
{
// Time-aware, with time spliced into the output path
writerPtr_->beginTime(freqInst);
writerPtr_->open
(
surf.points(),
surf.surfFaces(),
(outDirBase / fName),
false // serial - already merged
);
writerPtr_->nFields(1); // Legacy VTK
writerPtr_->write(title, data);
writerPtr_->endTime();
writerPtr_->clear();
}
if (areaAverage_)
{
return sum(data*surf.magSf())/sum(surf.magSf());
}
else
{
return sum(data)/(data.size() + ROOTVSMALL);
}
}
}
scalar surfaceNoise::surfaceAverage
(
const scalarField& data,
const labelList& procFaceOffset
) const
{
if (Pstream::parRun())
{
// Collect the surface data so that we can output the surfaces
PstreamBuffers pBufs(Pstream::commsTypes::nonBlocking);
if (!Pstream::master())
{
UOPstream toProc(Pstream::masterNo(), pBufs);
toProc << data;
}
pBufs.finishedGathers();
scalar areaAverage = 0;
if (Pstream::master())
{
// Note: hard-coded to read mesh from first time index
const meshedSurface& surf = readerPtr_->geometry(0);
scalarField allData(surf.size());
forAll(data, faceI)
{
// Master procFaceOffset is zero...
allData[faceI] = data[faceI];
}
for (const int procI : Pstream::subProcs())
{
UIPstream fromProc(procI, pBufs);
scalarList dataSlice(fromProc);
forAll(dataSlice, i)
{
label faceI = procFaceOffset[procI] + i;
allData[faceI] = dataSlice[i];
}
}
if (areaAverage_)
{
areaAverage = sum(allData*surf.magSf())/sum(surf.magSf());
}
else
{
areaAverage = sum(allData)/allData.size();
}
}
Pstream::broadcast(areaAverage);
return areaAverage;
}
else
{
if (areaAverage_)
{
// Note: hard-coded to read mesh from first time index
const meshedSurface& surf = readerPtr_->geometry(0);
return sum(data*surf.magSf())/sum(surf.magSf());
}
return sum(data)/data.size();
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
surfaceNoise::surfaceNoise
(
const dictionary& dict,
const objectRegistry& obr,
const word& name,
const bool readFields
)
:
noiseModel(dict, obr, name, false),
inputFileNames_(),
pName_("p"),
pIndex_(0),
times_(),
deltaT_(0),
startTimeIndex_(0),
nFace_(0),
fftWriteInterval_(1),
areaAverage_(false),
readerType_(word::null),
readerPtr_(nullptr),
writerPtr_(nullptr)
{
if (readFields)
{
read(dict);
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool surfaceNoise::read(const dictionary& dict)
{
if (noiseModel::read(dict))
{
if (!dict.readIfPresent("files", inputFileNames_))
{
inputFileNames_.resize(1);
dict.readEntry("file", inputFileNames_.first());
}
dict.readIfPresent("p", pName_);
dict.readIfPresent("fftWriteInterval", fftWriteInterval_);
Info<< " Pressure field name: " << pName_ << nl
<< " FFT write interval: " << fftWriteInterval_ << nl;
dict.readIfPresent("areaAverage", areaAverage_);
if (areaAverage_)
{
Info<< " Averaging: area weighted" << endl;
}
else
{
Info<< " Averaging: ensemble" << endl;
}
readerType_ = dict.get<word>("reader");
const word writerType(dict.get<word>("writer"));
writerPtr_ = surfaceWriter::New
(
writerType,
dict.subOrEmptyDict("writeOptions").subOrEmptyDict(writerType)
);
// Use outputDir/TIME/surface-name
writerPtr_->useTimeDir(true);
Info << endl;
return true;
}
return false;
}
void surfaceNoise::calculate()
{
forAll(inputFileNames_, filei)
{
fileName fName = inputFileNames_[filei];
fName.expand();
if (!fName.isAbsolute())
{
fName = argList::envGlobalPath()/fName;
}
initialise(fName);
// Container for pressure time history data per face
List<scalarField> pData;
// Processor procFaceOffsets
labelList procFaceOffset;
if (Pstream::parRun())
{
const label nProcs = Pstream::nProcs();
const label nFacePerProc = floor(nFace_/nProcs) + 1;
procFaceOffset.setSize(nProcs + 1, 0);
for (label i = 1; i < procFaceOffset.size(); ++i)
{
procFaceOffset[i] = min(i*nFacePerProc, nFace_);
}
}
else
{
procFaceOffset.setSize(1, nFace_);
}
// Read pressure data from file
readSurfaceData(procFaceOffset, pData);
// Process the pressure data, and store results as surface values per
// frequency so that it can be output using the surface writer
Info<< "Creating noise FFTs" << endl;
const scalarField freq1(uniformFrequencies(deltaT_, true));
// Reset desired frequency range if outside actual frequency range
fLower_ = min(fLower_, max(freq1));
fUpper_ = min(fUpper_, max(freq1));
// Storage for FFT data
const label nLocalFace = pData.size();
const label nFFT = ceil(freq1.size()/scalar(fftWriteInterval_));
List<scalarField> surfPrmsf(nFFT);
List<scalarField> surfPSDf(nFFT);
forAll(surfPrmsf, freqI)
{
surfPrmsf[freqI].setSize(nLocalFace);
surfPSDf[freqI].setSize(nLocalFace);
}
// Storage for 1/3 octave data
labelList octave13BandIDs;
scalarField octave13FreqCentre;
setOctaveBands
(
freq1,
fLower_,
fUpper_,
3,
octave13BandIDs,
octave13FreqCentre
);
label bandSize = 0;
if (octave13BandIDs.empty())
{
WarningInFunction
<< "Octave band calculation failed (zero sized). "
<< "Please check your input data"
<< endl;
}
else
{
bandSize = octave13BandIDs.size() - 1;
}
List<scalarField> surfPrms13f(bandSize);
forAll(surfPrms13f, freqI)
{
surfPrms13f[freqI].setSize(nLocalFace);
}
const windowModel& win = windowModelPtr_();
{
forAll(pData, faceI)
{
const scalarField& p = pData[faceI];
// Generate the FFT-based data
const scalarField Prmsf(RMSmeanPf(p));
const scalarField PSDf(this->PSDf(p, deltaT_));
// Store the frequency results in slot for face of surface
forAll(surfPrmsf, i)
{
label freqI = i*fftWriteInterval_;
surfPrmsf[i][faceI] = Prmsf[freqI];
surfPSDf[i][faceI] = PSDf[freqI];
}
// Integrated PSD = P(rms)^2 [Pa^2]
const scalarField Prms13f
(
octaves
(
PSDf,
freq1,
octave13BandIDs
)
);
// Store the 1/3 octave results in slot for face of surface
forAll(surfPrms13f, freqI)
{
surfPrms13f[freqI][faceI] = Prms13f[freqI];
}
}
}
const word fNameBase = fName.stem();
// Output directory
fileName outDirBase(baseFileDir(filei)/fNameBase);
const scalar deltaf = 1.0/(deltaT_*win.nSamples());
Info<< "Writing fft surface data";
if (fftWriteInterval_ == 1)
{
Info<< endl;
}
else
{
Info<< " at every " << fftWriteInterval_ << " frequency points"
<< endl;
}
// Common output information
// Note: hard-coded to read mesh from first time index
scalar surfArea = 0;
label surfSize = 0;
if (Pstream::master())
{
const meshedSurface& surf = readerPtr_->geometry(0);
surfArea = sum(surf.magSf());
surfSize = surf.size();
}
Pstream::broadcast(surfArea);
Pstream::broadcast(surfSize);
List<Tuple2<string, token>> commonInfo =
{
{"Area average", token(word(Switch::name(areaAverage_)))},
{"Area sum", token(surfArea)},
{"Number of faces", token(surfSize)}
};
{
fileName outDir(outDirBase/"fft");
fileName outSurfDir(filePath(outDir));
// Determine frequency range of interest
// Note: frequencies have fixed interval, and are in the range
// 0 to fftWriteInterval_*(n-1)*deltaf
label f0 = ceil(fLower_/deltaf/scalar(fftWriteInterval_));
label f1 = floor(fUpper_/deltaf/scalar(fftWriteInterval_));
label nFreq = f1 - f0;
scalarField PrmsfAve(nFreq, Zero);
scalarField PSDfAve(nFreq, Zero);
scalarField fOut(nFreq, Zero);
if (nFreq == 0)
{
WarningInFunction
<< "No surface data available using a fftWriteInterval of "
<< fftWriteInterval_ << endl;
}
else
{
forAll(fOut, i)
{
label freqI = (i + f0)*fftWriteInterval_;
fOut[i] = freq1[freqI];
PrmsfAve[i] = writeSurfaceData
(
outSurfDir,
fNameBase,
"Prmsf",
freq1[freqI],
surfPrmsf[i + f0],
procFaceOffset,
writePrmsf_
);
PSDfAve[i] = writeSurfaceData
(
outSurfDir,
fNameBase,
"PSDf",
freq1[freqI],
surfPSDf[i + f0],
procFaceOffset,
writePSDf_
);
writeSurfaceData
(
outSurfDir,
fNameBase,
"PSD",
freq1[freqI],
PSD(surfPSDf[i + f0]),
procFaceOffset,
writePSD_
);
writeSurfaceData
(
outSurfDir,
fNameBase,
"SPL",
freq1[freqI],
SPL(surfPSDf[i + f0]*deltaf, freq1[freqI]),
procFaceOffset,
writeSPL_
);
}
}
if (Pstream::master())
{
{
auto filePtr = newFile(outDir/"Average_Prms_f");
auto& os = filePtr();
Info<< " Writing " << os.name() << endl;
writeFileHeader(os, "f [Hz]", "P(f) [Pa]", commonInfo);
writeFreqDataToFile(os, fOut, PrmsfAve);
}
{
auto filePtr = newFile(outDir/"Average_PSD_f_f");
auto& os = filePtr();
Info<< " Writing " << os.name() << endl;
writeFileHeader
(
os,
"f [Hz]",
"PSD(f) [PaPa_Hz]",
commonInfo
);
writeFreqDataToFile(os, fOut, PSDfAve);
}
{
auto filePtr = newFile(outDir/"Average_PSD_dB_Hz_f");
auto& os = filePtr();
Info<< " Writing " << os.name() << endl;
writeFileHeader
(
os,
"f [Hz]",
"PSD(f) [dB_Hz]",
commonInfo
);
writeFreqDataToFile(os, fOut, PSD(PSDfAve));
}
{
auto filePtr = newFile(outDir/"Average_SPL_dB_f");
auto& os = filePtr();
Info<< " Writing " << os.name() << endl;
writeFileHeader
(
os,
"f [Hz]",
"SPL(f) [dB]",
commonInfo
);
writeFreqDataToFile(os, fOut, SPL(PSDfAve*deltaf, fOut));
}
}
}
Info<< "Writing one-third octave surface data" << endl;
{
fileName outDir(outDirBase/"oneThirdOctave");
fileName outSurfDir(filePath(outDir));
scalarField PSDfAve(surfPrms13f.size(), Zero);
scalarField Prms13fAve(surfPrms13f.size(), Zero);
forAll(surfPrms13f, i)
{
writeSurfaceData
(
outSurfDir,
fNameBase,
"SPL13",
octave13FreqCentre[i],
SPL(surfPrms13f[i], octave13FreqCentre[i]),
procFaceOffset,
writeOctaves_
);
Prms13fAve[i] =
surfaceAverage(surfPrms13f[i], procFaceOffset);
}
if (Pstream::master())
{
auto filePtr = newFile(outDir/"Average_SPL13_dB_fm");
auto& os = filePtr();
Info<< " Writing " << os.name() << endl;
writeFileHeader
(
os,
"fm [Hz]",
"SPL(fm) [dB]",
commonInfo
);
writeFreqDataToFile
(
os,
octave13FreqCentre,
SPL(Prms13fAve, octave13FreqCentre)
);
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace noiseModels
} // End namespace Foam
// ************************************************************************* //