openfoam/applications/test/mapDistributePolyMesh/cavity/system/decomposeParDict.5
Mark Olesen 7f748bd5fd ENH: CleanFunctions refinements
- include constant/faMesh cleanup (cleanFaMesh) as part of standard
  cleanCase

- simplify cleanPolyMesh function to now just warn about old
  constant/polyMesh/blockMeshDict but not try to remove anything

- cleanup cellDist.vtu (decomposePar -dry-run) as well

ENH: foamRunTutorials - fallback to Allrun-parallel, Allrun-serial

TUT: call m4 with file argument instead of redirected stdin

TUT: adjust suffixes on decomposeParDict variants
2022-06-09 15:34:17 +02:00

154 lines
3.6 KiB
C++

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
note "mesh decomposition control dictionary";
object decomposeParDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
numberOfSubdomains 5;
//- Use the volScalarField named here as a weight for each cell in the
// decomposition. For example, use a particle population field to decompose
// for a balanced number of particles in a lagrangian simulation.
// weightField dsmcRhoNMean;
method scotch;
//method hierarchical;
// method simple;
// method metis;
// method manual;
// method multiLevel;
// method structured; // does 2D decomposition of structured mesh
multiLevelCoeffs
{
// Decomposition methods to apply in turn. This is like hierarchical but
// fully general - every method can be used at every level.
level0
{
numberOfSubdomains 64;
//method simple;
//simpleCoeffs
//{
// n (2 1 1);
// delta 0.001;
//}
method scotch;
}
level1
{
numberOfSubdomains 4;
method scotch;
}
}
// Desired output
simpleCoeffs
{
n (2 1 1);
delta 0.001;
}
hierarchicalCoeffs
{
n (1 2 1);
delta 0.001;
order xyz;
}
metisCoeffs
{
/*
processorWeights
(
1
1
1
1
);
*/
}
scotchCoeffs
{
//processorWeights
//(
// 1
// 1
// 1
// 1
//);
//writeGraph true;
//strategy "b";
}
manualCoeffs
{
dataFile "decompositionData";
}
structuredCoeffs
{
// Patches to do 2D decomposition on. Structured mesh only; cells have
// to be in 'columns' on top of patches.
patches (movingWall);
// Method to use on the 2D subset
method scotch;
}
/*
constraints
{
//- Keep owner and neighbour on same processor for faces in zones:
faces
{
type preserveFaceZones;
zones (heater solid1 solid3);
}
//- Keep owner and neighbour on same processor for faces in patches:
// (makes sense only for cyclic patches)
patches
{
type preservePatches,
patches (cyclic_half0 cyclic_half1);
}
//- Keep all of faceSet on a single processor. This puts all cells
// connected with a point, edge or face on the same processor.
// (just having face connected cells might not guarantee a balanced
// decomposition)
// The processor can be -1 (the decompositionMethod chooses the processor
// for a good load balance) or explicitly provided (upsets balance).
processors
{
type singleProcessorFaceSets;
sets ((f0 -1));
}
}
*/
//// Is the case distributed? Note: command-line argument -roots takes
//// precedence
//distributed yes;
//// Per slave (so nProcs-1 entries) the directory above the case.
//roots
//(
// "/tmp"
// "/tmp"
//);
// ************************************************************************* //