openfoam/applications/utilities/postProcessing/lagrangian/steadyParticleTracks/steadyParticleTracks.C
Mark Olesen c3e14ffdd5 ENH: refactor coordSet writers (#2347)
- the very old 'writer' class was fully stateless and always templated
  on an particular output type.

  This is now replaced with a 'coordSetWriter' with similar concepts
  as previously introduced for surface writers (#1206).

  - writers change from being a generic state-less set of routines to
    more properly conforming to the normal notion of a writer.

  - Parallel data is done *outside* of the writers, since they are used
    in a wide variety of contexts and the caller is currently still in
    a better position for deciding how to combine parallel data.

ENH: update sampleSets to sample on per-field basis (#2347)

- sample/write a field in a single step.

- support for 'sampleOnExecute' to obtain values at execution
  intervals without writing.

- support 'sets' input as a dictionary entry (as well as a list),
  which is similar to the changes for sampled-surface and permits use
  of changeDictionary to modify content.

- globalIndex for gather to reduce parallel communication, less code

- qualify the sampleSet results (properties) with the name of the set.
  The sample results were previously without a qualifier, which meant
  that only the last property value was actually saved (previous ones
  overwritten).

  For example,
  ```
    sample1
    {
        scalar
        {
            average(line,T) 349.96521;
            min(line,T)     349.9544281;
            max(line,T)     350;
            average(cells,T) 349.9854619;
            min(cells,T)    349.6589286;
            max(cells,T)    350.4967271;
            average(line,epsilon) 0.04947733869;
            min(line,epsilon) 0.04449639927;
            max(line,epsilon) 0.06452856475;
        }
        label
        {
            size(line,T)    79;
            size(cells,T)   1720;
            size(line,epsilon) 79;
        }
    }
  ```

ENH: update particleTracks application

- use globalIndex to manage original parcel addressing and
  for gathering. Simplify code by introducing a helper class,
  storing intermediate fields in hash tables instead of
  separate lists.

ADDITIONAL NOTES:

- the regionSizeDistribution largely retains separate writers since
  the utility of placing sum/dev/count for all fields into a single file
  is questionable.

- the streamline writing remains a "soft" upgrade, which means that
  scalar and vector fields are still collected a priori and not
  on-the-fly.  This is due to how the streamline infrastructure is
  currently handled (should be upgraded in the future).
2022-03-10 19:41:22 +01:00

394 lines
12 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
steadyParticleTracks
Group
grpPostProcessingUtilities
Description
Generate a legacy VTK file of particle tracks for cases that were
computed using a steady-state cloud
Note:
- Case must be re-constructed (if running in parallel) before use
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Cloud.H"
#include "IOdictionary.H"
#include "fvMesh.H"
#include "Time.H"
#include "timeSelector.H"
#include "OFstream.H"
#include "labelPairHashes.H"
#include "IOField.H"
#include "IOobjectList.H"
#include "SortableList.H"
#include "passiveParticleCloud.H"
#include "steadyParticleTracksTemplates.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Extract list of IOobjects, modifying the input IOobjectList in the
// process
IOobjectList preFilterFields
(
IOobjectList& cloudObjects,
const wordRes& acceptFields,
const wordRes& excludeFields
)
{
IOobjectList filteredObjects(cloudObjects.capacity());
DynamicList<label> missed(acceptFields.size());
// Selection here is slighly different than usual
// - an empty accept filter means "ignore everything"
if (!acceptFields.empty())
{
const wordRes::filter pred(acceptFields, excludeFields);
const wordList allNames(cloudObjects.sortedNames());
// Detect missing fields
forAll(acceptFields, i)
{
if
(
acceptFields[i].isLiteral()
&& !allNames.found(acceptFields[i])
)
{
missed.append(i);
}
}
for (const word& fldName : allNames)
{
const auto iter = cloudObjects.cfind(fldName);
if (!pred(fldName) || !iter.found())
{
continue; // reject
}
const IOobject& io = *(iter.val());
if
(
//OR: fieldTypes::basic.found(io.headerClassName())
io.headerClassName() == IOField<label>::typeName
|| io.headerClassName() == IOField<scalar>::typeName
|| io.headerClassName() == IOField<vector>::typeName
|| io.headerClassName() == IOField<sphericalTensor>::typeName
|| io.headerClassName() == IOField<symmTensor>::typeName
|| io.headerClassName() == IOField<tensor>::typeName
)
{
// Transfer from cloudObjects -> filteredObjects
filteredObjects.add(cloudObjects.remove(fldName));
}
}
}
if (missed.size())
{
WarningInFunction
<< nl
<< "Cannot find field file matching "
<< UIndirectList<wordRe>(acceptFields, missed) << endl;
}
return filteredObjects;
}
void readFieldsAndWriteVTK
(
OFstream& os,
const List<labelList>& particleMap,
const IOobjectList& filteredObjects
)
{
processFields<label>(os, particleMap, filteredObjects);
processFields<scalar>(os, particleMap, filteredObjects);
processFields<vector>(os, particleMap, filteredObjects);
processFields<sphericalTensor>(os, particleMap, filteredObjects);
processFields<symmTensor>(os, particleMap, filteredObjects);
processFields<tensor>(os, particleMap, filteredObjects);
}
} // End namespace Foam
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Generate a legacy VTK file of particle tracks for cases that were"
" computed using a steady-state cloud"
);
argList::noParallel();
timeSelector::addOptions();
#include "addRegionOption.H"
argList::addOption
(
"dict",
"file",
"Alternative particleTrackDict dictionary"
);
argList::addVerboseOption("Additional verbosity");
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
#include "createControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
const fileName vtkPath(runTime.rootPath()/runTime.globalCaseName()/"VTK");
mkDir(vtkPath);
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
const fileName vtkTimePath(vtkPath/runTime.timeName());
mkDir(vtkTimePath);
pointField particlePosition;
labelList particleToTrack;
label nTracks = 0;
// Transfer particles to (more convenient) list
{
Info<< " Reading particle positions" << endl;
passiveParticleCloud myCloud(mesh, cloudName);
Info<< "\n Read " << returnReduce(myCloud.size(), sumOp<label>())
<< " particles" << endl;
const label nParticles = myCloud.size();
particlePosition.resize(nParticles);
particleToTrack.resize(nParticles);
LabelPairMap<label> trackTable;
label np = 0;
for (const passiveParticle& p : myCloud)
{
const label origId = p.origId();
const label origProc = p.origProc();
particlePosition[np] = p.position();
const labelPair key(origProc, origId);
const auto iter = trackTable.cfind(key);
if (iter.found())
{
particleToTrack[np] = *iter;
}
else
{
particleToTrack[np] = trackTable.size();
trackTable.insert(key, trackTable.size());
}
++np;
}
nTracks = trackTable.size();
}
if (nTracks == 0)
{
Info<< "\n No track data" << endl;
}
else
{
Info<< "\n Generating " << nTracks << " tracks" << endl;
// Determine length of each track
labelList trackLengths(nTracks, Zero);
for (const label tracki : particleToTrack)
{
++trackLengths[tracki];
}
// Particle "age" property used to sort the tracks
List<SortableList<scalar>> agePerTrack(nTracks);
List<List<label>> particleMap(nTracks);
forAll(trackLengths, i)
{
const label length = trackLengths[i];
agePerTrack[i].setSize(length);
particleMap[i].setSize(length);
}
// Store the particle age per track
IOobjectList cloudObjects
(
mesh,
runTime.timeName(),
cloud::prefix/cloudName
);
// TODO: gather age across all procs
{
tmp<IOField<scalar>> tage =
readParticleField<scalar>("age", cloudObjects);
const auto& age = tage();
labelList trackSamples(nTracks, Zero);
forAll(particleToTrack, i)
{
const label tracki = particleToTrack[i];
const label samplei = trackSamples[tracki];
agePerTrack[tracki][samplei] = age[i];
particleMap[tracki][samplei] = i;
++trackSamples[tracki];
}
}
const IOobjectList filteredObjects
(
preFilterFields(cloudObjects, acceptFields, excludeFields)
);
if (Pstream::master())
{
OFstream os(vtkTimePath/"particleTracks.vtk");
Info<< "\n Writing particle tracks to " << os.name() << endl;
label nPoints = sum(trackLengths);
os << "# vtk DataFile Version 2.0" << nl
<< "particleTracks" << nl
<< "ASCII" << nl
<< "DATASET POLYDATA" << nl
<< "POINTS " << nPoints << " float" << nl;
Info<< "\n Writing points" << endl;
{
forAll(agePerTrack, i)
{
agePerTrack[i].sort();
const labelList& ids = agePerTrack[i].indices();
labelList& particleIds = particleMap[i];
{
// Update addressing
List<label> sortedIds(ids);
forAll(sortedIds, j)
{
sortedIds[j] = particleIds[ids[j]];
}
particleIds = sortedIds;
}
forAll(ids, j)
{
const label localId = particleIds[j];
const point& pos = particlePosition[localId];
os << pos.x() << ' ' << pos.y() << ' ' << pos.z()
<< nl;
}
}
}
// Write track (line) connectivity to file
Info<< "\n Writing track lines" << endl;
os << "\nLINES " << nTracks << ' ' << nPoints + nTracks << nl;
// Write ids of track points to file
{
label globalPtI = 0;
forAll(particleMap, i)
{
os << particleMap[i].size() << nl;
forAll(particleMap[i], j)
{
os << ' ' << globalPtI++;
if (((j + 1) % 10 == 0) && (j != 0))
{
os << nl;
}
}
os << nl;
}
}
const label nFields = filteredObjects.size();
os << "POINT_DATA " << nPoints << nl
<< "FIELD attributes " << nFields << nl;
Info<< "\n Processing fields" << nl << endl;
readFieldsAndWriteVTK(os, particleMap, filteredObjects);
}
}
Info<< endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //