openfoam/applications/utilities/surface/surfaceInertia/surfaceInertia.C
2010-12-15 17:46:15 +00:00

390 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2009-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
momentOfInertiaTest
Description
Calculates the inertia tensor and principal axes and moments of a
command line specified triSurface. Inertia can either be of the
solid body or of a thin shell.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "ListOps.H"
#include "triSurface.H"
#include "OFstream.H"
#include "meshTools.H"
#include "Random.H"
#include "transform.H"
#include "IOmanip.H"
#include "Pair.H"
#include "momentOfInertia.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
int main(int argc, char *argv[])
{
argList::addNote
(
"Calculates the inertia tensor and principal axes and moments "
"of the specified surface.\n"
"Inertia can either be of the solid body or of a thin shell."
);
argList::noParallel();
argList::validArgs.append("surfaceFile");
argList::addBoolOption
(
"shellProperties",
"inertia of a thin shell"
);
argList::addOption
(
"density",
"scalar",
"Specify density, "
"kg/m3 for solid properties, kg/m2 for shell properties"
);
argList::addOption
(
"referencePoint",
"vector",
"Inertia relative to this point, not the centre of mass"
);
argList args(argc, argv);
const fileName surfFileName = args[1];
const scalar density = args.optionLookupOrDefault("density", 1.0);
vector refPt = vector::zero;
bool calcAroundRefPt = args.optionReadIfPresent("referencePoint", refPt);
triSurface surf(surfFileName);
scalar m = 0.0;
vector cM = vector::zero;
tensor J = tensor::zero;
if (args.optionFound("shellProperties"))
{
momentOfInertia::massPropertiesShell(surf, density, m, cM, J);
}
else
{
momentOfInertia::massPropertiesSolid(surf, density, m, cM, J);
}
if (m < 0)
{
WarningIn(args.executable() + "::main")
<< "Negative mass detected, the surface may be inside-out." << endl;
}
vector eVal = eigenValues(J);
tensor eVec = eigenVectors(J);
label pertI = 0;
Random rand(57373);
while ((magSqr(eVal) < VSMALL) && pertI < 10)
{
WarningIn(args.executable() + "::main")
<< "No eigenValues found, shape may have symmetry, "
<< "perturbing inertia tensor diagonal" << endl;
J.xx() *= 1.0 + SMALL*rand.scalar01();
J.yy() *= 1.0 + SMALL*rand.scalar01();
J.zz() *= 1.0 + SMALL*rand.scalar01();
eVal = eigenValues(J);
eVec = eigenVectors(J);
pertI++;
}
bool showTransform = true;
if
(
(mag(eVec.x() ^ eVec.y()) > (1.0 - SMALL))
&& (mag(eVec.y() ^ eVec.z()) > (1.0 - SMALL))
&& (mag(eVec.z() ^ eVec.x()) > (1.0 - SMALL))
)
{
// Make the eigenvectors a right handed orthogonal triplet
eVec = tensor
(
eVec.x(),
eVec.y(),
eVec.z() * sign((eVec.x() ^ eVec.y()) & eVec.z())
);
// Finding the most natural transformation. Using Lists
// rather than tensors to allow indexed permutation.
// Cartesian basis vectors - right handed orthogonal triplet
List<vector> cartesian(3);
cartesian[0] = vector(1, 0, 0);
cartesian[1] = vector(0, 1, 0);
cartesian[2] = vector(0, 0, 1);
// Principal axis basis vectors - right handed orthogonal
// triplet
List<vector> principal(3);
principal[0] = eVec.x();
principal[1] = eVec.y();
principal[2] = eVec.z();
scalar maxMagDotProduct = -GREAT;
// Matching axis indices, first: cartesian, second:principal
Pair<label> match(-1, -1);
forAll(cartesian, cI)
{
forAll(principal, pI)
{
scalar magDotProduct = mag(cartesian[cI] & principal[pI]);
if (magDotProduct > maxMagDotProduct)
{
maxMagDotProduct = magDotProduct;
match.first() = cI;
match.second() = pI;
}
}
}
scalar sense = sign
(
cartesian[match.first()] & principal[match.second()]
);
if (sense < 0)
{
// Invert the best match direction and swap the order of
// the other two vectors
List<vector> tPrincipal = principal;
tPrincipal[match.second()] *= -1;
tPrincipal[(match.second() + 1) % 3] =
principal[(match.second() + 2) % 3];
tPrincipal[(match.second() + 2) % 3] =
principal[(match.second() + 1) % 3];
principal = tPrincipal;
vector tEVal = eVal;
tEVal[(match.second() + 1) % 3] = eVal[(match.second() + 2) % 3];
tEVal[(match.second() + 2) % 3] = eVal[(match.second() + 1) % 3];
eVal = tEVal;
}
label permutationDelta = match.second() - match.first();
if (permutationDelta != 0)
{
// Add 3 to the permutationDelta to avoid negative indices
permutationDelta += 3;
List<vector> tPrincipal = principal;
vector tEVal = eVal;
for (label i = 0; i < 3; i++)
{
tPrincipal[i] = principal[(i + permutationDelta) % 3];
tEVal[i] = eVal[(i + permutationDelta) % 3];
}
principal = tPrincipal;
eVal = tEVal;
}
label matchedAlready = match.first();
match =Pair<label>(-1, -1);
maxMagDotProduct = -GREAT;
forAll(cartesian, cI)
{
if (cI == matchedAlready)
{
continue;
}
forAll(principal, pI)
{
if (pI == matchedAlready)
{
continue;
}
scalar magDotProduct = mag(cartesian[cI] & principal[pI]);
if (magDotProduct > maxMagDotProduct)
{
maxMagDotProduct = magDotProduct;
match.first() = cI;
match.second() = pI;
}
}
}
sense = sign
(
cartesian[match.first()] & principal[match.second()]
);
if (sense < 0 || (match.second() - match.first()) != 0)
{
principal[match.second()] *= -1;
List<vector> tPrincipal = principal;
tPrincipal[(matchedAlready + 1) % 3] =
principal[(matchedAlready + 2) % 3]*-sense;
tPrincipal[(matchedAlready + 2) % 3] =
principal[(matchedAlready + 1) % 3]*-sense;
principal = tPrincipal;
vector tEVal = eVal;
tEVal[(matchedAlready + 1) % 3] = eVal[(matchedAlready + 2) % 3];
tEVal[(matchedAlready + 2) % 3] = eVal[(matchedAlready + 1) % 3];
eVal = tEVal;
}
eVec = tensor(principal[0], principal[1], principal[2]);
// {
// tensor R = rotationTensor(vector(1, 0, 0), eVec.x());
// R = rotationTensor(R & vector(0, 1, 0), eVec.y()) & R;
// Info<< "R = " << nl << R << endl;
// Info<< "R - eVec.T() " << R - eVec.T() << endl;
// }
}
else
{
WarningIn(args.executable() + "::main")
<< "Non-unique eigenvectors, cannot compute transformation "
<< "from Cartesian axes" << endl;
showTransform = false;
}
Info<< nl << setprecision(12)
<< "Density: " << density << nl
<< "Mass: " << m << nl
<< "Centre of mass: " << cM << nl
<< "Inertia tensor around centre of mass: " << nl << J << nl
<< "eigenValues (principal moments): " << eVal << nl
<< "eigenVectors (principal axes): " << nl
<< eVec.x() << nl << eVec.y() << nl << eVec.z() << endl;
if (showTransform)
{
Info<< "Transform tensor from reference state (orientation):" << nl
<< eVec.T() << nl
<< "Rotation tensor required to transform "
"from the body reference frame to the global "
"reference frame, i.e.:" << nl
<< "globalVector = orientation & bodyLocalVector"
<< endl;
Info<< nl
<< "Entries for sixDoFRigidBodyDisplacement boundary condition:"
<< nl
<< " mass " << m << token::END_STATEMENT << nl
<< " centreOfMass " << cM << token::END_STATEMENT << nl
<< " momentOfInertia " << eVal << token::END_STATEMENT << nl
<< " orientation " << eVec.T() << token::END_STATEMENT
<< endl;
}
if (calcAroundRefPt)
{
Info<< nl << "Inertia tensor relative to " << refPt << ": " << nl
<< momentOfInertia::applyParallelAxisTheorem(m, cM, J, refPt)
<< endl;
}
OFstream str("axes.obj");
Info<< nl << "Writing scaled principal axes at centre of mass of "
<< surfFileName << " to " << str.name() << endl;
scalar scale = mag(cM - surf.points()[0])/eVal.component(findMin(eVal));
meshTools::writeOBJ(str, cM);
meshTools::writeOBJ(str, cM + scale*eVal.x()*eVec.x());
meshTools::writeOBJ(str, cM + scale*eVal.y()*eVec.y());
meshTools::writeOBJ(str, cM + scale*eVal.z()*eVec.z());
for (label i = 1; i < 4; i++)
{
str << "l " << 1 << ' ' << i + 1 << endl;
}
Info<< nl << "End" << nl << endl;
return 0;
}
// ************************************************************************* //