openfoam/applications/test/hexRef8/Test-hexRef8.C

421 lines
12 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-hexRef8
Description
Test app for refinement and unrefinement. Runs a few iterations refining
and unrefining.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "pointFields.H"
#include "hexRef8.H"
#include "mapPolyMesh.H"
#include "polyTopoChange.H"
#include "Random.H"
#include "zeroGradientFvPatchFields.H"
#include "calculatedPointPatchFields.H"
#include "pointConstraints.H"
#include "fvcDiv.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
bool notEqual(const scalar s1, const scalar s2, const scalar tol)
{
return mag(s1-s2) > tol;
}
// Main program:
int main(int argc, char *argv[])
{
#include "addTimeOptions.H"
argList::validArgs.append("inflate (true|false)");
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
const pointConstraints& pc = pointConstraints::New(pointMesh::New(mesh));
const Switch inflate(args.args()[1]);
if (inflate)
{
Info<< "Splitting/deleting cells using inflation/deflation" << nl
<< endl;
}
else
{
Info<< "Splitting/deleting cells, introducing points at new position"
<< nl << endl;
}
Random rndGen(0);
// Force generation of V()
(void)mesh.V();
// Test mapping
// ------------
// 1. uniform field stays uniform
volScalarField one
(
IOobject
(
"one",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("one", dimless, 1.0),
zeroGradientFvPatchScalarField::typeName
);
Info<< "Writing one field "
<< one.name() << " in " << runTime.timeName() << endl;
one.write();
// 2. linear profile gets preserved
volScalarField ccX
(
IOobject
(
"ccX",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh.C().component(0)
);
Info<< "Writing x component of cell centres to "
<< ccX.name()
<< " in " << runTime.timeName() << endl;
ccX.write();
// Uniform surface field
surfaceScalarField surfaceOne
(
IOobject
(
"surfaceOne",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("one", dimless, 1.0),
calculatedFvsPatchScalarField::typeName
);
Info<< "Writing surface one field "
<< surfaceOne.name() << " in " << runTime.timeName() << endl;
surfaceOne.write();
// Uniform point field
pointScalarField pointX
(
IOobject
(
"pointX",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
pointMesh::New(mesh),
dimensionedScalar("one", dimless, 1.0),
calculatedPointPatchScalarField::typeName
);
pointX.internalField() = mesh.points().component(0);
pointX.correctBoundaryConditions();
Info<< "Writing x-component field "
<< pointX.name() << " in " << runTime.timeName() << endl;
pointX.write();
// Force allocation of V. Important for any mesh changes since otherwise
// old time volumes are not stored
const scalar totalVol = gSum(mesh.V());
// Construct refiner. Read initial cell and point levels.
hexRef8 meshCutter(mesh);
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
if (mesh.globalData().nTotalCells() == 0)
{
break;
}
mesh.moving(false);
mesh.topoChanging(false);
label action = rndGen.integer(0, 5);
if (action == 0)
{
Info<< nl << "-- moving only" << endl;
mesh.movePoints(pointField(mesh.points()));
}
else if (action == 1 || action == 2)
{
// Mesh changing engine.
polyTopoChange meshMod(mesh);
if (action == 1)
{
// Refine
label nRefine = mesh.nCells()/20;
DynamicList<label> refineCandidates(nRefine);
for (label i=0; i<nRefine; i++)
{
refineCandidates.append(rndGen.integer(0, mesh.nCells()-1));
}
labelList cellsToRefine
(
meshCutter.consistentRefinement
(
refineCandidates,
true // buffer layer
)
);
Info<< nl << "-- selected "
<< returnReduce(cellsToRefine.size(), sumOp<label>())
<< " cells out of " << mesh.globalData().nTotalCells()
<< " for refinement" << endl;
// Play refinement commands into mesh changer.
meshCutter.setRefinement(cellsToRefine, meshMod);
}
else
{
// Unrefine
labelList allSplitPoints(meshCutter.getSplitPoints());
label nUnrefine = allSplitPoints.size()/20;
labelHashSet candidates(2*nUnrefine);
for (label i=0; i<nUnrefine; i++)
{
label index = rndGen.integer(0, allSplitPoints.size()-1);
candidates.insert(allSplitPoints[index]);
}
labelList splitPoints = meshCutter.consistentUnrefinement
(
candidates.toc(),
false
);
Info<< nl << "-- selected "
<< returnReduce(splitPoints.size(), sumOp<label>())
<< " points out of "
<< returnReduce(allSplitPoints.size(), sumOp<label>())
<< " for unrefinement" << endl;
// Play refinement commands into mesh changer.
meshCutter.setUnrefinement(splitPoints, meshMod);
}
// Create mesh, return map from old to new mesh.
Info<< nl << "-- actually changing mesh" << endl;
autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh, inflate);
// Update fields
Info<< nl << "-- mapping mesh data" << endl;
mesh.updateMesh(map);
// Inflate mesh
if (map().hasMotionPoints())
{
Info<< nl << "-- moving mesh" << endl;
mesh.movePoints(map().preMotionPoints());
}
// Update numbering of cells/vertices.
Info<< nl << "-- mapping hexRef8 data" << endl;
meshCutter.updateMesh(map);
}
Info<< nl<< "-- Mesh : moving:" << mesh.moving()
<< " topoChanging:" << mesh.topoChanging()
<< " changing:" << mesh.changing()
<< endl;
Info<< "Writing fields" << nl << endl;
runTime.write();
// Check mesh volume conservation
if (mesh.moving())
{
#include "volContinuity.H"
}
else
{
if (mesh.V().size() != mesh.nCells())
{
FatalErrorIn(args.executable())
<< "Volume not mapped. V:" << mesh.V().size()
<< " nCells:" << mesh.nCells()
<< exit(FatalError);
}
const scalar newVol = gSum(mesh.V());
Info<< "Initial volume = " << totalVol
<< " New volume = " << newVol
<< endl;
if (mag(newVol-totalVol)/totalVol > 1e-10)
{
FatalErrorIn(args.executable())
<< "Volume loss: old volume:" << totalVol
<< " new volume:" << newVol
<< exit(FatalError);
}
else
{
Info<< "Volume check OK" << nl << endl;
}
}
// Check constant profile
{
const scalar max = gMax(one);
const scalar min = gMin(one);
Info<< "Uniform one field min = " << min
<< " max = " << max << endl;
if (notEqual(max, 1.0, 1e-10) || notEqual(min, 1.0, 1e-10))
{
FatalErrorIn(args.executable())
<< "Uniform volVectorField not preserved."
<< " Min and max should both be 1.0. min:" << min
<< " max:" << max
<< exit(FatalError);
}
else
{
Info<< "Uniform field mapping check OK" << nl << endl;
}
}
// Check linear profile
{
const scalarField diff = ccX-mesh.C().component(0);
const scalar max = gMax(diff);
const scalar min = gMin(diff);
Info<< "Linear profile field min = " << min
<< " max = " << max << endl;
if (notEqual(max, 0.0, 1e-10) || notEqual(min, 0.0, 1e-10))
{
Info<< "Linear profile not preserved."
<< " Min and max should both be 0.0. min:" << min
<< " max:" << max << nl << endl;
}
else
{
Info<< "Linear profile mapping check OK" << nl << endl;
}
}
// Check face field mapping
if (surfaceOne.size())
{
const scalar max = gMax(surfaceOne.internalField());
const scalar min = gMin(surfaceOne.internalField());
Info<< "Uniform surface field min = " << min
<< " max = " << max << endl;
if (notEqual(max, 1.0, 1e-10) || notEqual(min, 1.0, 1e-10))
{
FatalErrorIn(args.executable())
<< "Uniform surfaceScalarField not preserved."
<< " Min and max should both be 1.0. min:" << min
<< " max:" << max
<< exit(FatalError);
}
else
{
Info<< "Uniform surfaceScalarField mapping check OK" << nl
<< endl;
}
}
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "pc:" << pc.patchPatchPointConstraintPoints().size() << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //