openfoam/applications/test/SymmTensor2D/Test-SymmTensor2D.C
Mark Olesen 4994456a28 ENH: add 2D det() / inv() methods for Tensor/SymmTensor (#2724)
- for cases where a 3D tensor is being used to represent 2D content,
  the determinant is zero. Can use inv2D(excludeDirection) to compensate
  and invert as if it were only 2D.

ENH: consistent definitions for magSqr of symmTensors, diagSqr() norm

COMP: return scalar not component type for magSqr

- had inconsistent definitions with SymmTensor returning the component
  type and Tensor returning scalar. Only evident with complex.
2023-03-23 10:31:54 +01:00

671 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2019-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-SymmTensor2D
Description
Tests for \c SymmTensor2D constructors, member functions and operators
using \c floatScalar, \c doubleScalar, and \c complex base types.
Eigen decomposition tests for \c symmTensor2D, i.e. SymmTensor2D<scalar>.
Cross-checks were obtained from 'NumPy 1.15.1' and 'SciPy 1.1.0' if no
theoretical cross-check exists (like eigendecomposition relations), and
were hard-coded for elementwise comparisons.
For \c complex base type, the cross-checks do only involve zero imag part.
\*---------------------------------------------------------------------------*/
#include "symmTensor2D.H"
#include "transform.H"
#include "Random.H"
#include "scalar.H"
#include "complex.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Total number of unit tests
unsigned nTest_ = 0;
// Total number of failed unit tests
unsigned nFail_ = 0;
// Create a random symmTensor2D
symmTensor2D makeRandomContainer(Random& rnd)
{
symmTensor2D A(Zero);
std::generate(A.begin(), A.end(), [&]{ return rnd.GaussNormal<scalar>(); });
return A;
}
// Compare two floating point types, and print output.
// Do ++nFail_ if values of two objects are not equal within a given tolerance.
// The function is converted from PEP-485.
template<class Type>
typename std::enable_if<pTraits<Type>::rank == 0, void>::type
cmp
(
const word& msg,
const Type& x,
const Type& y,
const scalar absTol = 0, //<! useful for cmps near zero
const scalar relTol = 1e-8 //<! are values the same within 8 decimals
)
{
Info<< msg << x << "?=" << y << endl;
unsigned nFail = 0;
if (max(absTol, relTol*max(mag(x), mag(y))) < mag(x - y))
{
++nFail;
}
if (nFail)
{
Info<< nl
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
++nFail_;
}
++nTest_;
}
// Compare two containers elementwise, and print output.
// Do ++nFail_ if two components are not equal within a given tolerance.
// The function is converted from PEP-485
template<class Type>
typename std::enable_if<pTraits<Type>::rank != 0, void>::type
cmp
(
const word& msg,
const Type& x,
const Type& y,
const scalar absTol = 0,
const scalar relTol = 1e-8
)
{
Info<< msg << x << "?=" << y << endl;
unsigned nFail = 0;
for (direction i = 0; i < pTraits<Type>::nComponents; ++i)
{
if (max(absTol, relTol*max(mag(x[i]), mag(y[i]))) < mag(x[i] - y[i]))
{
++nFail;
}
}
if (nFail)
{
Info<< nl
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
++nFail_;
}
++nTest_;
}
// Create each constructor of SymmTensor2D<Type>, and print output
template<class Type>
void test_constructors(Type)
{
{
Info<< "# Construct initialized to zero:" << nl;
const SymmTensor2D<Type> sT(Zero);
Info<< sT << endl;
}
{
Info<< "# Construct given VectorSpace:" << nl;
const VectorSpace<SymmTensor2D<Type>, Type, 3> V(Zero);
const SymmTensor2D<Type> sT(V);
Info<< sT << endl;
}
{
Info<< "# Construct given SphericalTensor2D:" << nl;
const SphericalTensor2D<Type> Sp(Type(5));
const SymmTensor2D<Type> sT(Sp);
Info<< sT << endl;
}
{
Info<< "# Construct given the three components:" << nl;
const SymmTensor2D<Type> sT
(
Type(1), Type(2),
Type(4)
);
Info<< sT << endl;
}
{
Info<< "# Copy construct:" << nl;
const SymmTensor2D<Type> S(Type(1), Type(2), Type(3));
const SymmTensor2D<Type> sT(S);
Info<< sT << endl;
}
}
// Execute each member function of SymmTensor2D<Type>, and print output
template<class Type>
void test_member_funcs(Type)
{
SymmTensor2D<Type> sT(Type(1), Type(2), Type(-3));
const SymmTensor2D<Type> csT(Type(-3), Type(2), Type(1));
{
Info<< "# Component access:" << nl;
SymmTensor2D<Type> cpsT
(
sT.xx(), sT.xy(),
sT.yy()
);
cmp(" 'SymmTensor2D' access:", sT, cpsT);
cmp(" xy()=yx():", sT.xy(), sT.yx());
const SymmTensor2D<Type> cpcsT
(
csT.xx(), csT.xy(),
csT.yy()
);
cmp(" 'const SymmTensor2D' access:", csT, cpcsT);
cmp(" xy()=yx():", sT.xy(), sT.yx());
}
{
Info<< "# Diagonal access:" << nl;
cmp
(
" 'SymmTensor2D'.diag():",
sT.diag(),
Vector2D<Type>(Type(1), Type(-3))
);
cmp
(
" 'const SymmTensor2D'.diag():",
csT.diag(),
Vector2D<Type>(Type(-3), Type(1))
);
Info<< "# Diagonal manipulation:" << nl;
sT.diag(Vector2D<Type>(Type(-10), Type(-15)));
cmp
(
" 'SymmTensor2D'.diag('Vector2D'):",
sT.diag(),
Vector2D<Type>(Type(-10), Type(-15))
);
}
{
Info<< "# Tensor operations:" << nl;
Info<< " Transpose:" << nl;
cmp(" 'SymmTensor2D'.T():", sT.T(), sT);
}
{
Info<< "# Member operators:" << nl;
sT = SphericalTensor2D<Type>(Type(5));
cmp
(
" Assign to a SphericalTensor2D:",
sT,
SymmTensor2D<Type>
(
Type(5), Zero,
Type(5)
)
);
}
}
// Execute each global function of SymmTensor2D<Type>, and print output
template<class Type>
void test_global_funcs(Type)
{
const SymmTensor2D<Type> sT(Type(1), Type(2), Type(-3));
const Vector2D<Type> v(Type(-3), Type(2));
Info<< "# Operands: " << nl
<< " SymmTensor2D<Type> = " << sT << nl
<< " Vector2D<Type> = " << v << endl;
cmp(" Trace = ", tr(sT), Type(-2));
cmp(" Spherical part = ", sph(sT), SphericalTensor2D<Type>(tr(sT)/Type(2)));
cmp(" Symmetric part = ", symm(sT), sT);
cmp(" Twice the symmetric part = ", twoSymm(sT), 2*sT);
cmp
(
" Deviatoric part = ",
dev(sT),
SymmTensor2D<Type>
(
Type(2), Type(2),
Type(-2)
)
);
cmp(" Two-third deviatoric part = ", dev2(sT), sT - 2*sph(sT));
cmp(" Determinant = ", det(sT), Type(-7.000000000000001));
cmp
(
" Cofactor tensor = ",
cof(sT),
SymmTensor2D<Type>
(
Type(-3), Type(-2),
Type(1)
)
);
cmp
(
" Inverse = ",
inv(sT, det(sT)),
SymmTensor2D<Type>
(
Type(0.42857143), Type(0.28571429),
Type(-0.14285714)
),
1e-7
);
cmp
(
" Inverse (another) = ",
inv(sT),
SymmTensor2D<Type>
(
Type(0.42857143), Type(0.28571429),
Type(-0.14285714)
),
1e-7
);
cmp(" First invariant = ", invariantI(sT), Type(-2));
cmp(" Second invariant = ", invariantII(sT), Type(-7));
cmp
(
" Inner-product with self = ",
innerSqr(sT),
SymmTensor2D<Type>
(
Type(5), Type(-4),
Type(13)
)
);
cmp(" Square of Frobenius norm = ", magSqr(sT), scalar(17.999999999999996));
cmp
(
" Outer-product of a Vector2D with itself = ",
sqr(v),
SymmTensor2D<Type>
(
Type(9), Type(-6),
Type(4)
)
);
}
// Execute each global operator of SymmTensor2D<Type>, and print output
template<class Type>
void test_global_opers(Type)
{
const Tensor2D<Type> T
(
Type(1), Type(-2),
Type(3), Type(-4)
);
const SymmTensor2D<Type> sT
(
Type(1), Type(2),
Type(-4)
);
const SphericalTensor2D<Type> spT(Type(-1));
const Vector2D<Type> v(Type(3), Type(-2));
const Type x(-4);
Info<< "# Operands:" << nl
<< " Tensor2D = " << T << nl
<< " SymmTensor2D = " << sT << nl
<< " SphericalTensor2D = " << spT << nl
<< " Vector2D = " << v << nl
<< " Type = " << x << endl;
cmp
(
" Sum of SpTensor2D-SymmTensor2D = ",
(spT + sT),
SymmTensor2D<Type>
(
Type(0), Type(2),
Type(-5)
)
);
cmp
(
" Sum of SymmTensor2D-SpTensor2D = ",
(sT + spT),
SymmTensor2D<Type>
(
Type(0), Type(2),
Type(-5)
)
);
cmp
(
" Subtract SymmTensor2D from SpTensor2D = ",
(spT - sT),
SymmTensor2D<Type>
(
Type(-2), Type(-2),
Type(3)
)
);
cmp
(
" Subtract SpTensor2D from SymmTensor2D = ",
(sT - spT),
SymmTensor2D<Type>
(
Type(2), Type(2),
Type(-3)
)
);
cmp
(
" Division of a SymmTensor2D by a Type",
sT/x,
SymmTensor2D<Type>
(
Type(-0.25), Type(-0.5),
Type(1)
)
);
cmp
(
" Inner-product of SymmTensor2D-SymmTensor2D = ",
(sT & sT),
Tensor2D<Type>
(
Type(5), Type(-6),
Type(-6), Type(20)
)
);
cmp
(
" Inner-product of SpTensor2D-SymmTensor2D = ",
(spT & sT),
SymmTensor2D<Type>
(
Type(-1), Type(-2),
Type(4)
)
);
cmp
(
" Inner-product of SymmTensor2D-SpTensor2D = ",
(sT & spT),
SymmTensor2D<Type>
(
Type(-1), Type(-2),
Type(4)
)
);
cmp
(
" Inner-product of SymmTensor2D-Vector2D = ",
(sT & v),
Vector2D<Type>(Type(-1), Type(14)) // Column-vector
);
cmp
(
" Inner-product of Vector2D-SymmTensor2D = ",
(v & sT),
Vector2D<Type>(Type(-1), Type(14)) // Row-vector
);
cmp(" D-inner-prod of SymmTensor2D-SymmTensor2D = ", (sT && sT), Type(25));
cmp(" D-inner-prod of SymmTensor2D-SpTensor2D = ", (sT && spT), Type(3));
cmp(" D-inner-prod of SpTensor2D-SymmTensor2D = ", (spT && sT), Type(3));
}
// Return false if given eigenvalues fail to satisy eigenvalue relations
// Relations: (Beauregard & Fraleigh (1973), ISBN 0-395-14017-X, p. 307)
void test_eigenvalues(const symmTensor2D& T, const vector2D& EVals)
{
{
const scalar determinant = det(T);
const scalar EValsProd = EVals.x()*EVals.y();
cmp("# Product of eigenvalues = det(T):", EValsProd, determinant, 1e-8);
}
{
const scalar trace = tr(T);
scalar EValsSum = 0.0;
for (const auto& val : EVals)
{
EValsSum += val;
}
cmp("# Sum of eigenvalues = trace(T):", EValsSum, trace);
}
}
// Return false if a given eigenvalue-eigenvector pair
// fails to satisfy the characteristic equation
void test_characteristic_equation
(
const symmTensor2D& T,
const vector2D& EVals,
const tensor2D& EVecs
)
{
Info<< "# Characteristic equation:" << nl;
for (direction dir = 0; dir < pTraits<vector2D>::nComponents; ++dir)
{
Info<< "EVal = " << EVals[dir] << nl
<< "EVec = " << EVecs.row(dir) << nl;
const vector2D leftSide(T & EVecs.row(dir));
const vector2D rightSide(EVals[dir]*EVecs.row(dir));
const vector2D X(leftSide - rightSide);
for (const auto x : X)
{
cmp(" (sT & EVec - EVal*EVec) = 0:", x, 0.0, 1e-5);
}
}
}
// Return false if the eigen functions fail to satisfy relations
void test_eigen_funcs(const symmTensor2D& T)
{
Info<< "# Operand:" << nl
<< " symmTensor2D = " << T << nl;
Info<< "# Return eigenvalues of a given symmTensor2D:" << nl;
const vector2D EVals(eigenValues(T));
Info<< EVals << endl;
test_eigenvalues(T, EVals);
Info<< "# Return eigenvectors of a given symmTensor2D corresponding to"
<< " given eigenvalues:" << nl;
const tensor2D EVecs0(eigenVectors(T, EVals));
Info<< EVecs0 << endl;
test_characteristic_equation(T, EVals, EVecs0);
Info<< "# Return eigenvectors of a given symmTensor2D by computing"
<< " the eigenvalues of the symmTensor2D in the background:" << nl;
const tensor2D EVecs1(eigenVectors(T));
Info<< EVecs1 << endl;
}
// Do compile-time recursion over the given types
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){}
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID)
{
Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl;
test_constructors(std::get<I>(types));
Info<< nl << " ## Test member functions: "<< typeID[I] <<" ##" << nl;
test_member_funcs(std::get<I>(types));
Info<< nl << " ## Test global functions: "<< typeID[I] << " ##" << nl;
test_global_funcs(std::get<I>(types));
Info<< nl << " ## Test global operators: "<< typeID[I] <<" ##" << nl;
test_global_opers(std::get<I>(types));
run_tests<I + 1, Tp...>(types, typeID);
}
// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
const std::tuple<floatScalar, doubleScalar, complex> types
(
std::make_tuple(Zero, Zero, Zero)
);
const List<word> typeID
({
"SymmTensor2D<floatScalar>",
"SymmTensor2D<doubleScalar>",
"SymmTensor2D<complex>"
});
run_tests(types, typeID);
Info<< nl << " ## Test symmTensor2D eigen functions: ##" << nl;
const label numberOfTests = 10000;
Random rndGen(1234);
for (label i = 0; i < numberOfTests; ++i)
{
const symmTensor2D T(makeRandomContainer(rndGen));
test_eigen_funcs(T);
}
{
Info<< nl << " ## A symmTensor2D with T.xy = VSMALL" << nl;
for (label i = 0; i < numberOfTests; ++i)
{
symmTensor2D T(makeRandomContainer(rndGen));
T.xy() = VSMALL;
test_eigen_funcs(T);
}
}
{
Info<< nl << " ## A symmTensor2D with T.xx = T.yy: ##" << nl;
for (label i = 0; i < numberOfTests; ++i)
{
symmTensor2D T(makeRandomContainer(rndGen));
T.xx() = T.yy();
test_eigen_funcs(T);
}
}
{
Info<< nl << " ## A zero symmTensor2D: ##"<< nl;
const symmTensor2D zeroT(Zero);
test_eigen_funcs(zeroT);
}
{
Info<< nl << " ## A stiff symmTensor2D: ##"<< nl;
const symmTensor2D stiff
(
pow(10.0, 10), pow(10.0, -8),
pow(10.0, 9)
);
test_eigen_funcs(stiff);
}
{
Info<< nl
<< " ## Random symmTensor2D with tiny off-diag elements: ##"
<< nl;
const List<scalar> epsilons
({
0, SMALL, Foam::sqrt(SMALL), sqr(SMALL), Foam::cbrt(SMALL),
-SMALL, -Foam::sqrt(SMALL), -sqr(SMALL), -Foam::cbrt(SMALL)
});
for (label i = 0; i < numberOfTests; ++i)
{
for (const auto& eps : epsilons)
{
{
symmTensor2D T(makeRandomContainer(rndGen));
T.xy() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor2D T(makeRandomContainer(rndGen));
T.xy() = eps;
test_eigen_funcs(T);
}
}
}
}
if (nFail_)
{
Info<< nl << " #### "
<< "Failed in " << nFail_ << " tests "
<< "out of total " << nTest_ << " tests "
<< "####\n" << endl;
return 1;
}
Info<< nl << " #### Passed all " << nTest_ <<" tests ####\n" << endl;
return 0;
}
// ************************************************************************* //