openfoam/applications/utilities/preProcessing/viewFactorsGen/viewFactorsGen.C
2016-04-16 18:34:41 +01:00

955 lines
26 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
viewFactorsGen
Description
View factors are calculated based on a face agglomeration array
(finalAgglom generated by faceAgglomerate utility).
Each view factor between the agglomerated faces i and j (Fij) is calculated
using a double integral of the sub-areas composing the agglomaration.
The patches involved in the view factor calculation are taken from the Qr
volScalarField (radiative flux) when is greyDiffusiveRadiationViewFactor
otherwise they are not included.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "fvMesh.H"
#include "singleCellFvMesh.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "fixedValueFvPatchFields.H"
#include "distributedTriSurfaceMesh.H"
#include "cyclicAMIPolyPatch.H"
#include "mapDistribute.H"
#include "meshTools.H"
#include "uindirectPrimitivePatch.H"
#include "DynamicField.H"
#include "scalarMatrices.H"
#include "scalarListIOList.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
triSurface triangulate
(
const polyBoundaryMesh& bMesh,
const labelHashSet& includePatches,
const labelListIOList& finalAgglom,
labelList& triSurfaceToAgglom,
const globalIndex& globalNumbering,
const polyBoundaryMesh& coarsePatches
)
{
const polyMesh& mesh = bMesh.mesh();
// Storage for surfaceMesh. Size estimate.
DynamicList<labelledTri> triangles
(
mesh.nFaces() - mesh.nInternalFaces()
);
label newPatchI = 0;
label localTriFaceI = 0;
forAllConstIter(labelHashSet, includePatches, iter)
{
const label patchI = iter.key();
const polyPatch& patch = bMesh[patchI];
const pointField& points = patch.points();
label nTriTotal = 0;
forAll(patch, patchFaceI)
{
const face& f = patch[patchFaceI];
faceList triFaces(f.nTriangles(points));
label nTri = 0;
f.triangles(points, nTri, triFaces);
forAll(triFaces, triFaceI)
{
const face& f = triFaces[triFaceI];
triangles.append(labelledTri(f[0], f[1], f[2], newPatchI));
nTriTotal++;
triSurfaceToAgglom[localTriFaceI++] = globalNumbering.toGlobal
(
Pstream::myProcNo(),
finalAgglom[patchI][patchFaceI]
+ coarsePatches[patchI].start()
);
}
}
newPatchI++;
}
triSurfaceToAgglom.resize(localTriFaceI);
triangles.shrink();
// Create globally numbered tri surface
triSurface rawSurface(triangles, mesh.points());
// Create locally numbered tri surface
triSurface surface
(
rawSurface.localFaces(),
rawSurface.localPoints()
);
// Add patch names to surface
surface.patches().setSize(newPatchI);
newPatchI = 0;
forAllConstIter(labelHashSet, includePatches, iter)
{
const label patchI = iter.key();
const polyPatch& patch = bMesh[patchI];
surface.patches()[newPatchI].index() = patchI;
surface.patches()[newPatchI].name() = patch.name();
surface.patches()[newPatchI].geometricType() = patch.type();
newPatchI++;
}
return surface;
}
void writeRays
(
const fileName& fName,
const pointField& compactCf,
const pointField& myFc,
const labelListList& visibleFaceFaces
)
{
OFstream str(fName);
label vertI = 0;
Pout<< "Dumping rays to " << str.name() << endl;
forAll(myFc, faceI)
{
const labelList visFaces = visibleFaceFaces[faceI];
forAll(visFaces, faceRemote)
{
label compactI = visFaces[faceRemote];
const point& remoteFc = compactCf[compactI];
meshTools::writeOBJ(str, myFc[faceI]);
vertI++;
meshTools::writeOBJ(str, remoteFc);
vertI++;
str << "l " << vertI-1 << ' ' << vertI << nl;
}
}
string cmd("objToVTK " + fName + " " + fName.lessExt() + ".vtk");
Pout<< "cmd:" << cmd << endl;
system(cmd);
}
scalar calculateViewFactorFij
(
const vector& i,
const vector& j,
const vector& dAi,
const vector& dAj
)
{
vector r = i - j;
scalar rMag = mag(r);
if (rMag > SMALL)
{
scalar dAiMag = mag(dAi);
scalar dAjMag = mag(dAj);
vector ni = dAi/dAiMag;
vector nj = dAj/dAjMag;
scalar cosThetaJ = mag(nj & r)/rMag;
scalar cosThetaI = mag(ni & r)/rMag;
return
(
(cosThetaI*cosThetaJ*dAjMag*dAiMag)
/(sqr(rMag)*constant::mathematical::pi)
);
}
else
{
return 0;
}
}
void insertMatrixElements
(
const globalIndex& globalNumbering,
const label fromProcI,
const labelListList& globalFaceFaces,
const scalarListList& viewFactors,
scalarSquareMatrix& matrix
)
{
forAll(viewFactors, faceI)
{
const scalarList& vf = viewFactors[faceI];
const labelList& globalFaces = globalFaceFaces[faceI];
label globalI = globalNumbering.toGlobal(fromProcI, faceI);
forAll(globalFaces, i)
{
matrix[globalI][globalFaces[i]] = vf[i];
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
// Read view factor dictionary
IOdictionary viewFactorDict
(
IOobject
(
"viewFactorsDict",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
const bool writeViewFactors =
viewFactorDict.lookupOrDefault<bool>("writeViewFactorMatrix", false);
const bool dumpRays =
viewFactorDict.lookupOrDefault<bool>("dumpRays", false);
const label debug = viewFactorDict.lookupOrDefault<label>("debug", 0);
volScalarField Qr
(
IOobject
(
"Qr",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
// Read agglomeration map
labelListIOList finalAgglom
(
IOobject
(
"finalAgglom",
mesh.facesInstance(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
);
// Create the coarse mesh using agglomeration
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (debug)
{
Pout << "\nCreating single cell mesh..." << endl;
}
singleCellFvMesh coarseMesh
(
IOobject
(
"coarse:" + mesh.name(),
runTime.timeName(),
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
finalAgglom
);
if (debug)
{
Pout << "\nCreated single cell mesh..." << endl;
}
// Calculate total number of fine and coarse faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
label nCoarseFaces = 0; //total number of coarse faces
label nFineFaces = 0; //total number of fine faces
const polyBoundaryMesh& patches = mesh.boundaryMesh();
const polyBoundaryMesh& coarsePatches = coarseMesh.boundaryMesh();
labelList viewFactorsPatches(patches.size());
const volScalarField::GeometricBoundaryField& Qrb = Qr.boundaryField();
label count = 0;
forAll(Qrb, patchI)
{
const polyPatch& pp = patches[patchI];
const fvPatchScalarField& QrpI = Qrb[patchI];
if ((isA<fixedValueFvPatchScalarField>(QrpI)) && (pp.size() > 0))
{
viewFactorsPatches[count] = QrpI.patch().index();
nCoarseFaces += coarsePatches[patchI].size();
nFineFaces += patches[patchI].size();
count ++;
}
}
viewFactorsPatches.resize(count);
// total number of coarse faces
label totalNCoarseFaces = nCoarseFaces;
reduce(totalNCoarseFaces, sumOp<label>());
if (Pstream::master())
{
Info << "\nTotal number of coarse faces: "<< totalNCoarseFaces << endl;
}
if (Pstream::master() && debug)
{
Pout << "\nView factor patches included in the calculation : "
<< viewFactorsPatches << endl;
}
// Collect local Cf and Sf on coarse mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DynamicList<point> localCoarseCf(nCoarseFaces);
DynamicList<point> localCoarseSf(nCoarseFaces);
DynamicList<label> localAgg(nCoarseFaces);
forAll(viewFactorsPatches, i)
{
const label patchID = viewFactorsPatches[i];
const polyPatch& pp = patches[patchID];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace = coarseMesh.patchFaceMap()[patchID];
const pointField& coarseCf = coarseMesh.Cf().boundaryField()[patchID];
const pointField& coarseSf = coarseMesh.Sf().boundaryField()[patchID];
labelHashSet includePatches;
includePatches.insert(patchID);
forAll(coarseCf, faceI)
{
point cf = coarseCf[faceI];
const label coarseFaceI = coarsePatchFace[faceI];
const labelList& fineFaces = coarseToFine[coarseFaceI];
const label agglomI =
agglom[fineFaces[0]] + coarsePatches[patchID].start();
// Construct single face
uindirectPrimitivePatch upp
(
UIndirectList<face>(pp, fineFaces),
pp.points()
);
List<point> availablePoints
(
upp.faceCentres().size()
+ upp.localPoints().size()
);
SubList<point>
(
availablePoints,
upp.faceCentres().size()
) = upp.faceCentres();
SubList<point>
(
availablePoints,
upp.localPoints().size(),
upp.faceCentres().size()
) = upp.localPoints();
point cfo = cf;
scalar dist = GREAT;
forAll(availablePoints, iPoint)
{
point cfFine = availablePoints[iPoint];
if (mag(cfFine-cfo) < dist)
{
dist = mag(cfFine-cfo);
cf = cfFine;
}
}
point sf = coarseSf[faceI];
localCoarseCf.append(cf);
localCoarseSf.append(sf);
localAgg.append(agglomI);
}
}
// Distribute local coarse Cf and Sf for shooting rays
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List<pointField> remoteCoarseCf(Pstream::nProcs());
List<pointField> remoteCoarseSf(Pstream::nProcs());
List<labelField> remoteCoarseAgg(Pstream::nProcs());
remoteCoarseCf[Pstream::myProcNo()] = localCoarseCf;
remoteCoarseSf[Pstream::myProcNo()] = localCoarseSf;
remoteCoarseAgg[Pstream::myProcNo()] = localAgg;
Pstream::gatherList(remoteCoarseCf);
Pstream::scatterList(remoteCoarseCf);
Pstream::gatherList(remoteCoarseSf);
Pstream::scatterList(remoteCoarseSf);
Pstream::gatherList(remoteCoarseAgg);
Pstream::scatterList(remoteCoarseAgg);
globalIndex globalNumbering(nCoarseFaces);
// Set up searching engine for obstacles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "searchingEngine.H"
// Determine rays between coarse face centres
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DynamicList<label> rayStartFace(nCoarseFaces + 0.01*nCoarseFaces);
DynamicList<label> rayEndFace(rayStartFace.size());
// Return rayStartFace in local index andrayEndFace in global index
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "shootRays.H"
// Calculate number of visible faces from local index
labelList nVisibleFaceFaces(nCoarseFaces, 0);
forAll(rayStartFace, i)
{
nVisibleFaceFaces[rayStartFace[i]]++;
}
labelListList visibleFaceFaces(nCoarseFaces);
label nViewFactors = 0;
forAll(nVisibleFaceFaces, faceI)
{
visibleFaceFaces[faceI].setSize(nVisibleFaceFaces[faceI]);
nViewFactors += nVisibleFaceFaces[faceI];
}
// - Construct compact numbering
// - return map from remote to compact indices
// (per processor (!= myProcNo) a map from remote index to compact index)
// - construct distribute map
// - renumber rayEndFace into compact addressing
List<Map<label>> compactMap(Pstream::nProcs());
mapDistribute map(globalNumbering, rayEndFace, compactMap);
labelListIOList IOsubMap
(
IOobject
(
"subMap",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map.subMap()
);
IOsubMap.write();
labelListIOList IOconstructMap
(
IOobject
(
"constructMap",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map.constructMap()
);
IOconstructMap.write();
IOList<label> consMapDim
(
IOobject
(
"constructMapDim",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
List<label>(1, map.constructSize())
);
consMapDim.write();
// visibleFaceFaces has:
// (local face, local viewed face) = compact viewed face
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nVisibleFaceFaces = 0;
forAll(rayStartFace, i)
{
label faceI = rayStartFace[i];
label compactI = rayEndFace[i];
visibleFaceFaces[faceI][nVisibleFaceFaces[faceI]++] = compactI;
}
// Construct data in compact addressing
// I need coarse Sf (Ai), fine Sf (dAi) and fine Cf(r) to calculate Fij
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pointField compactCoarseCf(map.constructSize(), Zero);
pointField compactCoarseSf(map.constructSize(), Zero);
List<List<point>> compactFineSf(map.constructSize());
List<List<point>> compactFineCf(map.constructSize());
DynamicList<label> compactPatchId(map.constructSize());
// Insert my coarse local values
SubList<point>(compactCoarseSf, nCoarseFaces) = localCoarseSf;
SubList<point>(compactCoarseCf, nCoarseFaces) = localCoarseCf;
// Insert my fine local values
label compactI = 0;
forAll(viewFactorsPatches, i)
{
label patchID = viewFactorsPatches[i];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace = coarseMesh.patchFaceMap()[patchID];
forAll(coarseToFine, coarseI)
{
compactPatchId.append(patchID);
List<point>& fineCf = compactFineCf[compactI];
List<point>& fineSf = compactFineSf[compactI++];
const label coarseFaceI = coarsePatchFace[coarseI];
const labelList& fineFaces = coarseToFine[coarseFaceI];
fineCf.setSize(fineFaces.size());
fineSf.setSize(fineFaces.size());
fineCf = UIndirectList<point>
(
mesh.Cf().boundaryField()[patchID],
coarseToFine[coarseFaceI]
);
fineSf = UIndirectList<point>
(
mesh.Sf().boundaryField()[patchID],
coarseToFine[coarseFaceI]
);
}
}
// Do all swapping
map.distribute(compactCoarseSf);
map.distribute(compactCoarseCf);
map.distribute(compactFineCf);
map.distribute(compactFineSf);
map.distribute(compactPatchId);
// Plot all rays between visible faces.
if (dumpRays)
{
writeRays
(
runTime.path()/"allVisibleFaces.obj",
compactCoarseCf,
remoteCoarseCf[Pstream::myProcNo()],
visibleFaceFaces
);
}
// Fill local view factor matrix
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
scalarListIOList F
(
IOobject
(
"F",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
nCoarseFaces
);
label totalPatches = coarsePatches.size();
reduce(totalPatches, maxOp<label>());
// Matrix sum in j(Fij) for each i (if enclosure sum = 1)
scalarSquareMatrix sumViewFactorPatch
(
totalPatches,
0.0
);
scalarList patchArea(totalPatches, 0.0);
if (Pstream::master())
{
Info<< "\nCalculating view factors..." << endl;
}
if (mesh.nSolutionD() == 3)
{
forAll(localCoarseSf, coarseFaceI)
{
const List<point>& localFineSf = compactFineSf[coarseFaceI];
const vector Ai = sum(localFineSf);
const List<point>& localFineCf = compactFineCf[coarseFaceI];
const label fromPatchId = compactPatchId[coarseFaceI];
patchArea[fromPatchId] += mag(Ai);
const labelList& visCoarseFaces = visibleFaceFaces[coarseFaceI];
forAll(visCoarseFaces, visCoarseFaceI)
{
F[coarseFaceI].setSize(visCoarseFaces.size());
label compactJ = visCoarseFaces[visCoarseFaceI];
const List<point>& remoteFineSj = compactFineSf[compactJ];
const List<point>& remoteFineCj = compactFineCf[compactJ];
const label toPatchId = compactPatchId[compactJ];
scalar Fij = 0;
forAll(localFineSf, i)
{
const vector& dAi = localFineSf[i];
const vector& dCi = localFineCf[i];
forAll(remoteFineSj, j)
{
const vector& dAj = remoteFineSj[j];
const vector& dCj = remoteFineCj[j];
scalar dIntFij = calculateViewFactorFij
(
dCi,
dCj,
dAi,
dAj
);
Fij += dIntFij;
}
}
F[coarseFaceI][visCoarseFaceI] = Fij/mag(Ai);
sumViewFactorPatch[fromPatchId][toPatchId] += Fij;
}
}
}
else if (mesh.nSolutionD() == 2)
{
const boundBox& box = mesh.bounds();
const Vector<label>& dirs = mesh.geometricD();
vector emptyDir = Zero;
forAll(dirs, i)
{
if (dirs[i] == -1)
{
emptyDir[i] = 1.0;
}
}
scalar wideBy2 = (box.span() & emptyDir)*2.0;
forAll(localCoarseSf, coarseFaceI)
{
const vector& Ai = localCoarseSf[coarseFaceI];
const vector& Ci = localCoarseCf[coarseFaceI];
vector Ain = Ai/mag(Ai);
vector R1i = Ci + (mag(Ai)/wideBy2)*(Ain ^ emptyDir);
vector R2i = Ci - (mag(Ai)/wideBy2)*(Ain ^ emptyDir) ;
const label fromPatchId = compactPatchId[coarseFaceI];
patchArea[fromPatchId] += mag(Ai);
const labelList& visCoarseFaces = visibleFaceFaces[coarseFaceI];
forAll(visCoarseFaces, visCoarseFaceI)
{
F[coarseFaceI].setSize(visCoarseFaces.size());
label compactJ = visCoarseFaces[visCoarseFaceI];
const vector& Aj = compactCoarseSf[compactJ];
const vector& Cj = compactCoarseCf[compactJ];
const label toPatchId = compactPatchId[compactJ];
vector Ajn = Aj/mag(Aj);
vector R1j = Cj + (mag(Aj)/wideBy2)*(Ajn ^ emptyDir);
vector R2j = Cj - (mag(Aj)/wideBy2)*(Ajn ^ emptyDir);
scalar d1 = mag(R1i - R2j);
scalar d2 = mag(R2i - R1j);
scalar s1 = mag(R1i - R1j);
scalar s2 = mag(R2i - R2j);
scalar Fij = mag((d1 + d2) - (s1 + s2))/(4.0*mag(Ai)/wideBy2);
F[coarseFaceI][visCoarseFaceI] = Fij;
sumViewFactorPatch[fromPatchId][toPatchId] += Fij*mag(Ai);
}
}
}
if (Pstream::master())
{
Info << "Writing view factor matrix..." << endl;
}
// Write view factors matrix in listlist form
F.write();
reduce(sumViewFactorPatch, sumOp<scalarSquareMatrix>());
reduce(patchArea, sumOp<scalarList>());
if (Pstream::master() && debug)
{
forAll(viewFactorsPatches, i)
{
label patchI = viewFactorsPatches[i];
forAll(viewFactorsPatches, i)
{
label patchJ = viewFactorsPatches[i];
Info << "F" << patchI << patchJ << ": "
<< sumViewFactorPatch[patchI][patchJ]/patchArea[patchI]
<< endl;
}
}
}
if (writeViewFactors)
{
volScalarField viewFactorField
(
IOobject
(
"viewFactorField",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("viewFactorField", dimless, 0)
);
label compactI = 0;
forAll(viewFactorsPatches, i)
{
label patchID = viewFactorsPatches[i];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace =
coarseMesh.patchFaceMap()[patchID];
forAll(coarseToFine, coarseI)
{
const scalar Fij = sum(F[compactI]);
const label coarseFaceID = coarsePatchFace[coarseI];
const labelList& fineFaces = coarseToFine[coarseFaceID];
forAll(fineFaces, fineId)
{
const label faceID = fineFaces[fineId];
viewFactorField.boundaryField()[patchID][faceID] = Fij;
}
compactI++;
}
}
viewFactorField.write();
}
// Invert compactMap (from processor+localface to compact) to go
// from compact to processor+localface (expressed as a globalIndex)
// globalIndex globalCoarFaceNum(coarseMesh.nFaces());
labelList compactToGlobal(map.constructSize());
// Local indices first (note: are not in compactMap)
for (label i = 0; i < globalNumbering.localSize(); i++)
{
compactToGlobal[i] = globalNumbering.toGlobal(i);
}
forAll(compactMap, procI)
{
const Map<label>& localToCompactMap = compactMap[procI];
forAllConstIter(Map<label>, localToCompactMap, iter)
{
compactToGlobal[iter()] = globalNumbering.toGlobal
(
procI,
iter.key()
);
}
}
if (Pstream::master())
{
scalarSquareMatrix Fmatrix(totalNCoarseFaces, 0.0);
labelListList globalFaceFaces(visibleFaceFaces.size());
// Create globalFaceFaces needed to insert view factors
// in F to the global matrix Fmatrix
forAll(globalFaceFaces, faceI)
{
globalFaceFaces[faceI] = renumber
(
compactToGlobal,
visibleFaceFaces[faceI]
);
}
labelListIOList IOglobalFaceFaces
(
IOobject
(
"globalFaceFaces",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
globalFaceFaces
);
IOglobalFaceFaces.write();
}
else
{
labelListList globalFaceFaces(visibleFaceFaces.size());
forAll(globalFaceFaces, faceI)
{
globalFaceFaces[faceI] = renumber
(
compactToGlobal,
visibleFaceFaces[faceI]
);
}
labelListIOList IOglobalFaceFaces
(
IOobject
(
"globalFaceFaces",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
globalFaceFaces
);
IOglobalFaceFaces.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //