255 lines
7.1 KiB
C
255 lines
7.1 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
ajointShapeOptimizationFoam
|
|
|
|
Description
|
|
Steady-state solver for incompressible, turbulent flow of non-Newtonian
|
|
fluids with optimisation of duct shape by applying "blockage" in regions
|
|
causing pressure loss as estimated using an adjoint formulation.
|
|
|
|
References:
|
|
\verbatim
|
|
"Implementation of a continuous adjoint for topology optimization of
|
|
ducted flows"
|
|
C. Othmer,
|
|
E. de Villiers,
|
|
H.G. Weller
|
|
AIAA-2007-3947
|
|
http://pdf.aiaa.org/preview/CDReadyMCFD07_1379/PV2007_3947.pdf
|
|
\endverbatim
|
|
|
|
Note that this solver optimises for total pressure loss whereas the
|
|
above paper describes the method for optimising power-loss.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "singlePhaseTransportModel.H"
|
|
#include "turbulentTransportModel.H"
|
|
#include "simpleControl.H"
|
|
#include "fvIOoptionList.H"
|
|
|
|
template<class Type>
|
|
void zeroCells
|
|
(
|
|
GeometricField<Type, fvPatchField, volMesh>& vf,
|
|
const labelList& cells
|
|
)
|
|
{
|
|
forAll(cells, i)
|
|
{
|
|
vf[cells[i]] = pTraits<Type>::zero;
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
#include "setRootCase.H"
|
|
|
|
#include "createTime.H"
|
|
#include "createMesh.H"
|
|
|
|
simpleControl simple(mesh);
|
|
|
|
#include "createFields.H"
|
|
#include "createFvOptions.H"
|
|
#include "initContinuityErrs.H"
|
|
#include "initAdjointContinuityErrs.H"
|
|
|
|
turbulence->validate();
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< "\nStarting time loop\n" << endl;
|
|
|
|
while (simple.loop())
|
|
{
|
|
Info<< "Time = " << runTime.timeName() << nl << endl;
|
|
|
|
laminarTransport.lookup("lambda") >> lambda;
|
|
|
|
//alpha +=
|
|
// mesh.relaxationFactor("alpha")
|
|
// *(lambda*max(Ua & U, zeroSensitivity) - alpha);
|
|
alpha +=
|
|
mesh.fieldRelaxationFactor("alpha")
|
|
*(min(max(alpha + lambda*(Ua & U), zeroAlpha), alphaMax) - alpha);
|
|
|
|
zeroCells(alpha, inletCells);
|
|
//zeroCells(alpha, outletCells);
|
|
|
|
// Pressure-velocity SIMPLE corrector
|
|
{
|
|
// Momentum predictor
|
|
|
|
tmp<fvVectorMatrix> UEqn
|
|
(
|
|
fvm::div(phi, U)
|
|
+ turbulence->divDevReff(U)
|
|
+ fvm::Sp(alpha, U)
|
|
==
|
|
fvOptions(U)
|
|
);
|
|
|
|
UEqn().relax();
|
|
|
|
fvOptions.constrain(UEqn());
|
|
|
|
solve(UEqn() == -fvc::grad(p));
|
|
|
|
fvOptions.correct(U);
|
|
|
|
volScalarField rAU(1.0/UEqn().A());
|
|
volVectorField HbyA("HbyA", U);
|
|
HbyA = rAU*UEqn().H();
|
|
UEqn.clear();
|
|
surfaceScalarField phiHbyA
|
|
(
|
|
"phiHbyA",
|
|
fvc::interpolate(HbyA) & mesh.Sf()
|
|
);
|
|
adjustPhi(phiHbyA, U, p);
|
|
|
|
// Non-orthogonal pressure corrector loop
|
|
while (simple.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
|
|
);
|
|
|
|
pEqn.setReference(pRefCell, pRefValue);
|
|
pEqn.solve();
|
|
|
|
if (simple.finalNonOrthogonalIter())
|
|
{
|
|
phi = phiHbyA - pEqn.flux();
|
|
}
|
|
}
|
|
|
|
#include "continuityErrs.H"
|
|
|
|
// Explicitly relax pressure for momentum corrector
|
|
p.relax();
|
|
|
|
// Momentum corrector
|
|
U = HbyA - rAU*fvc::grad(p);
|
|
U.correctBoundaryConditions();
|
|
fvOptions.correct(U);
|
|
}
|
|
|
|
// Adjoint Pressure-velocity SIMPLE corrector
|
|
{
|
|
// Adjoint Momentum predictor
|
|
|
|
volVectorField adjointTransposeConvection((fvc::grad(Ua) & U));
|
|
//volVectorField adjointTransposeConvection
|
|
//(
|
|
// fvc::reconstruct
|
|
// (
|
|
// mesh.magSf()*(fvc::snGrad(Ua) & fvc::interpolate(U))
|
|
// )
|
|
//);
|
|
|
|
zeroCells(adjointTransposeConvection, inletCells);
|
|
|
|
tmp<fvVectorMatrix> UaEqn
|
|
(
|
|
fvm::div(-phi, Ua)
|
|
- adjointTransposeConvection
|
|
+ turbulence->divDevReff(Ua)
|
|
+ fvm::Sp(alpha, Ua)
|
|
==
|
|
fvOptions(Ua)
|
|
);
|
|
|
|
UaEqn().relax();
|
|
|
|
fvOptions.constrain(UaEqn());
|
|
|
|
solve(UaEqn() == -fvc::grad(pa));
|
|
|
|
fvOptions.correct(Ua);
|
|
|
|
volScalarField rAUa(1.0/UaEqn().A());
|
|
volVectorField HbyAa("HbyAa", Ua);
|
|
HbyAa = rAUa*UaEqn().H();
|
|
UaEqn.clear();
|
|
surfaceScalarField phiHbyAa
|
|
(
|
|
"phiHbyAa",
|
|
fvc::interpolate(HbyAa) & mesh.Sf()
|
|
);
|
|
adjustPhi(phiHbyAa, Ua, pa);
|
|
|
|
// Non-orthogonal pressure corrector loop
|
|
while (simple.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix paEqn
|
|
(
|
|
fvm::laplacian(rAUa, pa) == fvc::div(phiHbyAa)
|
|
);
|
|
|
|
paEqn.setReference(paRefCell, paRefValue);
|
|
paEqn.solve();
|
|
|
|
if (simple.finalNonOrthogonalIter())
|
|
{
|
|
phia = phiHbyAa - paEqn.flux();
|
|
}
|
|
}
|
|
|
|
#include "adjointContinuityErrs.H"
|
|
|
|
// Explicitly relax pressure for adjoint momentum corrector
|
|
pa.relax();
|
|
|
|
// Adjoint momentum corrector
|
|
Ua = HbyAa - rAUa*fvc::grad(pa);
|
|
Ua.correctBoundaryConditions();
|
|
fvOptions.correct(Ua);
|
|
}
|
|
|
|
laminarTransport.correct();
|
|
turbulence->correct();
|
|
|
|
runTime.write();
|
|
|
|
Info<< "ExecutionTime = "
|
|
<< runTime.elapsedCpuTime()
|
|
<< " s\n\n" << endl;
|
|
}
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|