openfoam/applications/solvers/incompressible/adjointShapeOptimizationFoam/adjointShapeOptimizationFoam.C

255 lines
7.1 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
ajointShapeOptimizationFoam
Description
Steady-state solver for incompressible, turbulent flow of non-Newtonian
fluids with optimisation of duct shape by applying "blockage" in regions
causing pressure loss as estimated using an adjoint formulation.
References:
\verbatim
"Implementation of a continuous adjoint for topology optimization of
ducted flows"
C. Othmer,
E. de Villiers,
H.G. Weller
AIAA-2007-3947
http://pdf.aiaa.org/preview/CDReadyMCFD07_1379/PV2007_3947.pdf
\endverbatim
Note that this solver optimises for total pressure loss whereas the
above paper describes the method for optimising power-loss.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "simpleControl.H"
#include "fvIOoptionList.H"
template<class Type>
void zeroCells
(
GeometricField<Type, fvPatchField, volMesh>& vf,
const labelList& cells
)
{
forAll(cells, i)
{
vf[cells[i]] = pTraits<Type>::zero;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
simpleControl simple(mesh);
#include "createFields.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"
#include "initAdjointContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
laminarTransport.lookup("lambda") >> lambda;
//alpha +=
// mesh.relaxationFactor("alpha")
// *(lambda*max(Ua & U, zeroSensitivity) - alpha);
alpha +=
mesh.fieldRelaxationFactor("alpha")
*(min(max(alpha + lambda*(Ua & U), zeroAlpha), alphaMax) - alpha);
zeroCells(alpha, inletCells);
//zeroCells(alpha, outletCells);
// Pressure-velocity SIMPLE corrector
{
// Momentum predictor
tmp<fvVectorMatrix> UEqn
(
fvm::div(phi, U)
+ turbulence->divDevReff(U)
+ fvm::Sp(alpha, U)
==
fvOptions(U)
);
UEqn().relax();
fvOptions.constrain(UEqn());
solve(UEqn() == -fvc::grad(p));
fvOptions.correct(U);
volScalarField rAU(1.0/UEqn().A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn().H();
UEqn.clear();
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::interpolate(HbyA) & mesh.Sf()
);
adjustPhi(phiHbyA, U, p);
// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA - pEqn.flux();
}
}
#include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
// Momentum corrector
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
// Adjoint Pressure-velocity SIMPLE corrector
{
// Adjoint Momentum predictor
volVectorField adjointTransposeConvection((fvc::grad(Ua) & U));
//volVectorField adjointTransposeConvection
//(
// fvc::reconstruct
// (
// mesh.magSf()*(fvc::snGrad(Ua) & fvc::interpolate(U))
// )
//);
zeroCells(adjointTransposeConvection, inletCells);
tmp<fvVectorMatrix> UaEqn
(
fvm::div(-phi, Ua)
- adjointTransposeConvection
+ turbulence->divDevReff(Ua)
+ fvm::Sp(alpha, Ua)
==
fvOptions(Ua)
);
UaEqn().relax();
fvOptions.constrain(UaEqn());
solve(UaEqn() == -fvc::grad(pa));
fvOptions.correct(Ua);
volScalarField rAUa(1.0/UaEqn().A());
volVectorField HbyAa("HbyAa", Ua);
HbyAa = rAUa*UaEqn().H();
UaEqn.clear();
surfaceScalarField phiHbyAa
(
"phiHbyAa",
fvc::interpolate(HbyAa) & mesh.Sf()
);
adjustPhi(phiHbyAa, Ua, pa);
// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())
{
fvScalarMatrix paEqn
(
fvm::laplacian(rAUa, pa) == fvc::div(phiHbyAa)
);
paEqn.setReference(paRefCell, paRefValue);
paEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phia = phiHbyAa - paEqn.flux();
}
}
#include "adjointContinuityErrs.H"
// Explicitly relax pressure for adjoint momentum corrector
pa.relax();
// Adjoint momentum corrector
Ua = HbyAa - rAUa*fvc::grad(pa);
Ua.correctBoundaryConditions();
fvOptions.correct(Ua);
}
laminarTransport.correct();
turbulence->correct();
runTime.write();
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //