openfoam/applications/solvers/multiphase/multiphaseInterFoam/multiphaseMixture/multiphaseMixture.C
Henry Weller 99a10ecea6 Boundary conditions: Added extrapolatedCalculatedFvPatchField
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.

zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.

The entire OpenFOAM-dev code-base has been updated following the above
recommendations.

Henry G. Weller
CFD Direct
2016-02-20 22:44:37 +00:00

709 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseMixture.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "Time.H"
#include "subCycle.H"
#include "MULES.H"
#include "surfaceInterpolate.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
#include "fvcDiv.H"
#include "fvcFlux.H"
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
const Foam::scalar Foam::multiphaseMixture::convertToRad =
Foam::constant::mathematical::pi/180.0;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::multiphaseMixture::calcAlphas()
{
scalar level = 0.0;
alphas_ == 0.0;
forAllIter(PtrDictionary<phase>, phases_, iter)
{
alphas_ += level*iter();
level += 1.0;
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseMixture::multiphaseMixture
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
IOdictionary
(
IOobject
(
"transportProperties",
U.time().constant(),
U.db(),
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
phases_(lookup("phases"), phase::iNew(U, phi)),
mesh_(U.mesh()),
U_(U),
phi_(phi),
rhoPhi_
(
IOobject
(
"rhoPhi",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
dimensionedScalar("rhoPhi", dimMass/dimTime, 0.0)
),
alphas_
(
IOobject
(
"alphas",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh_,
dimensionedScalar("alphas", dimless, 0.0)
),
nu_
(
IOobject
(
"nu",
mesh_.time().timeName(),
mesh_
),
mu()/rho()
),
sigmas_(lookup("sigmas")),
dimSigma_(1, 0, -2, 0, 0),
deltaN_
(
"deltaN",
1e-8/pow(average(mesh_.V()), 1.0/3.0)
)
{
calcAlphas();
alphas_.write();
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::rho() const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<volScalarField> trho = iter()*iter().rho();
for (++iter; iter != phases_.end(); ++iter)
{
trho() += iter()*iter().rho();
}
return trho;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseMixture::rho(const label patchi) const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value();
for (++iter; iter != phases_.end(); ++iter)
{
trho() += iter().boundaryField()[patchi]*iter().rho().value();
}
return trho;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::mu() const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<volScalarField> tmu = iter()*iter().rho()*iter().nu();
for (++iter; iter != phases_.end(); ++iter)
{
tmu() += iter()*iter().rho()*iter().nu();
}
return tmu;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseMixture::mu(const label patchi) const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<scalarField> tmu =
iter().boundaryField()[patchi]
*iter().rho().value()
*iter().nu(patchi);
for (++iter; iter != phases_.end(); ++iter)
{
tmu() +=
iter().boundaryField()[patchi]
*iter().rho().value()
*iter().nu(patchi);
}
return tmu;
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseMixture::muf() const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<surfaceScalarField> tmuf =
fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu());
for (++iter; iter != phases_.end(); ++iter)
{
tmuf() +=
fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu());
}
return tmuf;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::nu() const
{
return nu_;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseMixture::nu(const label patchi) const
{
return nu_.boundaryField()[patchi];
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseMixture::nuf() const
{
return muf()/fvc::interpolate(rho());
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseMixture::surfaceTensionForce() const
{
tmp<surfaceScalarField> tstf
(
new surfaceScalarField
(
IOobject
(
"surfaceTensionForce",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"surfaceTensionForce",
dimensionSet(1, -2, -2, 0, 0),
0.0
)
)
);
surfaceScalarField& stf = tstf();
forAllConstIter(PtrDictionary<phase>, phases_, iter1)
{
const phase& alpha1 = iter1();
PtrDictionary<phase>::const_iterator iter2 = iter1;
++iter2;
for (; iter2 != phases_.end(); ++iter2)
{
const phase& alpha2 = iter2();
sigmaTable::const_iterator sigma =
sigmas_.find(interfacePair(alpha1, alpha2));
if (sigma == sigmas_.end())
{
FatalErrorInFunction
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
<< " in list of sigma values"
<< exit(FatalError);
}
stf += dimensionedScalar("sigma", dimSigma_, sigma())
*fvc::interpolate(K(alpha1, alpha2))*
(
fvc::interpolate(alpha2)*fvc::snGrad(alpha1)
- fvc::interpolate(alpha1)*fvc::snGrad(alpha2)
);
}
}
return tstf;
}
void Foam::multiphaseMixture::solve()
{
correct();
const Time& runTime = mesh_.time();
volScalarField& alpha = phases_.first();
const dictionary& alphaControls = mesh_.solverDict("alpha");
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
scalar cAlpha(readScalar(alphaControls.lookup("cAlpha")));
if (nAlphaSubCycles > 1)
{
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("0", rhoPhi_.dimensions(), 0)
);
dimensionedScalar totalDeltaT = runTime.deltaT();
for
(
subCycle<volScalarField> alphaSubCycle(alpha, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
solveAlphas(cAlpha);
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi_;
}
rhoPhi_ = rhoPhiSum;
}
else
{
solveAlphas(cAlpha);
}
// Update the mixture kinematic viscosity
nu_ = mu()/rho();
}
void Foam::multiphaseMixture::correct()
{
forAllIter(PtrDictionary<phase>, phases_, iter)
{
iter().correct();
}
}
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseMixture::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
// Correction for the boundary condition on the unit normal nHat on
// walls to produce the correct contact angle.
// The dynamic contact angle is calculated from the component of the
// velocity on the direction of the interface, parallel to the wall.
void Foam::multiphaseMixture::correctContactAngle
(
const phase& alpha1,
const phase& alpha2,
surfaceVectorField::GeometricBoundaryField& nHatb
) const
{
const volScalarField::GeometricBoundaryField& gbf
= alpha1.boundaryField();
const fvBoundaryMesh& boundary = mesh_.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
{
const alphaContactAngleFvPatchScalarField& acap =
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
vectorField& nHatPatch = nHatb[patchi];
vectorField AfHatPatch
(
mesh_.Sf().boundaryField()[patchi]
/mesh_.magSf().boundaryField()[patchi]
);
alphaContactAngleFvPatchScalarField::thetaPropsTable::
const_iterator tp =
acap.thetaProps().find(interfacePair(alpha1, alpha2));
if (tp == acap.thetaProps().end())
{
FatalErrorInFunction
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
<< "\n in table of theta properties for patch "
<< acap.patch().name()
<< exit(FatalError);
}
bool matched = (tp.key().first() == alpha1.name());
scalar theta0 = convertToRad*tp().theta0(matched);
scalarField theta(boundary[patchi].size(), theta0);
scalar uTheta = tp().uTheta();
// Calculate the dynamic contact angle if required
if (uTheta > SMALL)
{
scalar thetaA = convertToRad*tp().thetaA(matched);
scalar thetaR = convertToRad*tp().thetaR(matched);
// Calculated the component of the velocity parallel to the wall
vectorField Uwall
(
U_.boundaryField()[patchi].patchInternalField()
- U_.boundaryField()[patchi]
);
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
// Find the direction of the interface parallel to the wall
vectorField nWall
(
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
);
// Normalise nWall
nWall /= (mag(nWall) + SMALL);
// Calculate Uwall resolved normal to the interface parallel to
// the interface
scalarField uwall(nWall & Uwall);
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
}
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatPatch & AfHatPatch);
scalarField b1(cos(theta));
scalarField b2(nHatPatch.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatPatch = a*AfHatPatch + b*nHatPatch;
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
}
}
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::K
(
const phase& alpha1,
const phase& alpha2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(alpha1, alpha2);
correctContactAngle(alpha1, alpha2, tnHatfv().boundaryField());
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::nearInterface() const
{
tmp<volScalarField> tnearInt
(
new volScalarField
(
IOobject
(
"nearInterface",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("nearInterface", dimless, 0.0)
)
);
forAllConstIter(PtrDictionary<phase>, phases_, iter)
{
tnearInt() = max(tnearInt(), pos(iter() - 0.01)*pos(0.99 - iter()));
}
return tnearInt;
}
void Foam::multiphaseMixture::solveAlphas
(
const scalar cAlpha
)
{
static label nSolves=-1;
nSolves++;
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
surfaceScalarField phic(mag(phi_/mesh_.magSf()));
phic = min(cAlpha*phic, max(phic));
PtrList<surfaceScalarField> alphaPhiCorrs(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phase>, phases_, iter)
{
phase& alpha = iter();
alphaPhiCorrs.set
(
phasei,
new surfaceScalarField
(
"phi" + alpha.name() + "Corr",
fvc::flux
(
phi_,
alpha,
alphaScheme
)
)
);
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phasei];
forAllIter(PtrDictionary<phase>, phases_, iter2)
{
phase& alpha2 = iter2();
if (&alpha2 == &alpha) continue;
surfaceScalarField phir(phic*nHatf(alpha, alpha2));
alphaPhiCorr += fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha,
alpharScheme
);
}
MULES::limit
(
1.0/mesh_.time().deltaT().value(),
geometricOneField(),
alpha,
phi_,
alphaPhiCorr,
zeroField(),
zeroField(),
1,
0,
true
);
phasei++;
}
MULES::limitSum(alphaPhiCorrs);
rhoPhi_ = dimensionedScalar("0", dimensionSet(1, 0, -1, 0, 0), 0);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("sumAlpha", dimless, 0)
);
phasei = 0;
forAllIter(PtrDictionary<phase>, phases_, iter)
{
phase& alpha = iter();
surfaceScalarField& alphaPhi = alphaPhiCorrs[phasei];
alphaPhi += upwind<scalar>(mesh_, phi_).flux(alpha);
MULES::explicitSolve
(
geometricOneField(),
alpha,
alphaPhi,
zeroField(),
zeroField()
);
rhoPhi_ += alphaPhi*alpha.rho();
Info<< alpha.name() << " volume fraction, min, max = "
<< alpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(alpha).value()
<< ' ' << max(alpha).value()
<< endl;
sumAlpha += alpha;
phasei++;
}
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
calcAlphas();
}
bool Foam::multiphaseMixture::read()
{
if (transportModel::read())
{
bool readOK = true;
PtrList<entry> phaseData(lookup("phases"));
label phasei = 0;
forAllIter(PtrDictionary<phase>, phases_, iter)
{
readOK &= iter().read(phaseData[phasei++].dict());
}
lookup("sigmas") >> sigmas_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //