openfoam/applications/utilities/surface/surfaceFeatureExtract/surfaceFeatureExtract.C
2012-12-05 15:21:00 +00:00

1518 lines
44 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceFeatureExtract
Description
Extracts and writes surface features to file. All but the basic feature
extraction is WIP.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "triSurface.H"
#include "surfaceFeatures.H"
#include "featureEdgeMesh.H"
#include "extendedFeatureEdgeMesh.H"
#include "treeBoundBox.H"
#include "meshTools.H"
#include "OFstream.H"
#include "triSurfaceMesh.H"
#include "vtkSurfaceWriter.H"
#include "triSurfaceFields.H"
#include "indexedOctree.H"
#include "treeDataEdge.H"
#include "unitConversion.H"
#include "plane.H"
#ifdef ENABLE_CURVATURE
#include "buildCGALPolyhedron.H"
#include "CGALPolyhedronRings.H"
#include <CGAL/Monge_via_jet_fitting.h>
#include <CGAL/Lapack/Linear_algebra_lapack.h>
#include <CGAL/property_map.h>
#endif
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef ENABLE_CURVATURE
scalarField calcCurvature(const triSurface& surf)
{
scalarField k(surf.points().size(), 0);
Polyhedron P;
buildCGALPolyhedron convert(surf);
P.delegate(convert);
// Info<< "Created CGAL Polyhedron with " << label(P.size_of_vertices())
// << " vertices and " << label(P.size_of_facets())
// << " facets. " << endl;
// The rest of this function adapted from
// CGAL-3.7/examples/Jet_fitting_3/Mesh_estimation.cpp
//Vertex property map, with std::map
typedef std::map<Vertex*, int> Vertex2int_map_type;
typedef boost::associative_property_map< Vertex2int_map_type >
Vertex_PM_type;
typedef T_PolyhedralSurf_rings<Polyhedron, Vertex_PM_type > Poly_rings;
typedef CGAL::Monge_via_jet_fitting<Kernel> Monge_via_jet_fitting;
typedef Monge_via_jet_fitting::Monge_form Monge_form;
std::vector<Point_3> in_points; //container for data points
// default parameter values and global variables
unsigned int d_fitting = 2;
unsigned int d_monge = 2;
unsigned int min_nb_points = (d_fitting + 1)*(d_fitting + 2)/2;
//initialize the tag of all vertices to -1
Vertex_iterator vitb = P.vertices_begin();
Vertex_iterator vite = P.vertices_end();
Vertex2int_map_type vertex2props;
Vertex_PM_type vpm(vertex2props);
CGAL_For_all(vitb, vite)
{
put(vpm, &(*vitb), -1);
}
vite = P.vertices_end();
label vertI = 0;
for (vitb = P.vertices_begin(); vitb != vite; vitb++)
{
//initialize
Vertex* v = &(*vitb);
//gather points around the vertex using rings
// From: gather_fitting_points(v, in_points, vpm);
{
std::vector<Vertex*> gathered;
in_points.clear();
Poly_rings::collect_enough_rings(v, min_nb_points, gathered, vpm);
//store the gathered points
std::vector<Vertex*>::iterator itb = gathered.begin();
std::vector<Vertex*>::iterator ite = gathered.end();
CGAL_For_all(itb, ite)
{
in_points.push_back((*itb)->point());
}
}
//skip if the nb of points is to small
if ( in_points.size() < min_nb_points )
{
std::cerr
<< "not enough pts for fitting this vertex"
<< in_points.size()
<< std::endl;
continue;
}
// perform the fitting
Monge_via_jet_fitting monge_fit;
Monge_form monge_form = monge_fit
(
in_points.begin(),
in_points.end(),
d_fitting,
d_monge
);
// std::cout<< monge_form;;
// std::cout<< "condition number : "
// << monge_fit.condition_number() << nl << std::endl;
// Use the maximum curvature to give smaller cell sizes later.
k[vertI++] =
max
(
mag(monge_form.principal_curvatures(0)),
mag(monge_form.principal_curvatures(1))
);
}
return k;
}
#endif
bool edgesConnected(const edge& e1, const edge& e2)
{
if
(
e1.start() == e2.start()
|| e1.start() == e2.end()
|| e1.end() == e2.start()
|| e1.end() == e2.end()
)
{
return true;
}
return false;
}
scalar calcProximityOfFeaturePoints
(
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
)
{
scalar minDist = defaultCellSize;
for
(
label hI1 = 0;
hI1 < hitList.size() - 1;
++hI1
)
{
const pointIndexHit& pHit1 = hitList[hI1];
if (pHit1.hit())
{
for
(
label hI2 = hI1 + 1;
hI2 < hitList.size();
++hI2
)
{
const pointIndexHit& pHit2 = hitList[hI2];
if (pHit2.hit())
{
scalar curDist = mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist);
}
}
}
}
return minDist;
}
scalar calcProximityOfFeatureEdges
(
const extendedFeatureEdgeMesh& efem,
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
)
{
scalar minDist = defaultCellSize;
for
(
label hI1 = 0;
hI1 < hitList.size() - 1;
++hI1
)
{
const pointIndexHit& pHit1 = hitList[hI1];
if (pHit1.hit())
{
const edge& e1 = efem.edges()[pHit1.index()];
for
(
label hI2 = hI1 + 1;
hI2 < hitList.size();
++hI2
)
{
const pointIndexHit& pHit2 = hitList[hI2];
if (pHit2.hit())
{
const edge& e2 = efem.edges()[pHit2.index()];
// Don't refine if the edges are connected to each other
if (!edgesConnected(e1, e2))
{
scalar curDist =
mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist);
}
}
}
}
}
return minDist;
}
void dumpBox(const treeBoundBox& bb, const fileName& fName)
{
OFstream str(fName);
Info<< "Dumping bounding box " << bb << " as lines to obj file "
<< str.name() << endl;
pointField boxPoints(bb.points());
forAll(boxPoints, i)
{
meshTools::writeOBJ(str, boxPoints[i]);
}
forAll(treeBoundBox::edges, i)
{
const edge& e = treeBoundBox::edges[i];
str<< "l " << e[0]+1 << ' ' << e[1]+1 << nl;
}
}
// Deletes all edges inside/outside bounding box from set.
void deleteBox
(
const triSurface& surf,
const treeBoundBox& bb,
const bool removeInside,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
forAll(edgeStat, edgeI)
{
const point eMid = surf.edges()[edgeI].centre(surf.localPoints());
if (removeInside ? bb.contains(eMid) : !bb.contains(eMid))
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
bool onLine(const point& p, const linePointRef& line)
{
const point& a = line.start();
const point& b = line.end();
if
(
( p.x() < min(a.x(), b.x()) || p.x() > max(a.x(), b.x()) )
|| ( p.y() < min(a.y(), b.y()) || p.y() > max(a.y(), b.y()) )
|| ( p.z() < min(a.z(), b.z()) || p.z() > max(a.z(), b.z()) )
)
{
return false;
}
return true;
}
// Deletes all edges inside/outside bounding box from set.
void deleteEdges
(
const triSurface& surf,
const plane& cutPlane,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
const pointField& points = surf.points();
const labelList& meshPoints = surf.meshPoints();
forAll(edgeStat, edgeI)
{
const edge& e = surf.edges()[edgeI];
const point& p0 = points[meshPoints[e.start()]];
const point& p1 = points[meshPoints[e.end()]];
const linePointRef line(p0, p1);
// If edge does not intersect the plane, delete.
scalar intersect = cutPlane.lineIntersect(line);
point featPoint = intersect * (p1 - p0) + p0;
if (!onLine(featPoint, line))
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
void drawHitProblem
(
label fI,
const triSurface& surf,
const pointField& start,
const pointField& faceCentres,
const pointField& end,
const List<pointIndexHit>& hitInfo
)
{
Info<< nl << "# findLineAll did not hit its own face."
<< nl << "# fI " << fI
<< nl << "# start " << start[fI]
<< nl << "# f centre " << faceCentres[fI]
<< nl << "# end " << end[fI]
<< nl << "# hitInfo " << hitInfo
<< endl;
meshTools::writeOBJ(Info, start[fI]);
meshTools::writeOBJ(Info, faceCentres[fI]);
meshTools::writeOBJ(Info, end[fI]);
Info<< "l 1 2 3" << endl;
meshTools::writeOBJ(Info, surf.points()[surf[fI][0]]);
meshTools::writeOBJ(Info, surf.points()[surf[fI][1]]);
meshTools::writeOBJ(Info, surf.points()[surf[fI][2]]);
Info<< "f 4 5 6" << endl;
forAll(hitInfo, hI)
{
label hFI = hitInfo[hI].index();
meshTools::writeOBJ(Info, surf.points()[surf[hFI][0]]);
meshTools::writeOBJ(Info, surf.points()[surf[hFI][1]]);
meshTools::writeOBJ(Info, surf.points()[surf[hFI][2]]);
Info<< "f "
<< 3*hI + 7 << " "
<< 3*hI + 8 << " "
<< 3*hI + 9
<< endl;
}
}
// Unmark non-manifold edges if individual triangles are not features
void unmarkBaffles
(
const triSurface& surf,
const scalar includedAngle,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
const labelListList& edgeFaces = surf.edgeFaces();
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() > 2)
{
label i0 = eFaces[0];
//const labelledTri& f0 = surf[i0];
const Foam::vector& n0 = surf.faceNormals()[i0];
//Pout<< "edge:" << edgeI << " n0:" << n0 << endl;
bool same = true;
for (label i = 1; i < eFaces.size(); i++)
{
//const labelledTri& f = surf[i];
const Foam::vector& n = surf.faceNormals()[eFaces[i]];
//Pout<< " mag(n&n0): " << mag(n&n0) << endl;
if (mag(n&n0) < minCos)
{
same = false;
break;
}
}
if (same)
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
}
//- Divide into multiple normal bins
// - return REGION if != 2 normals
// - return REGION if 2 normals that make feature angle
// - otherwise return NONE and set normals,bins
surfaceFeatures::edgeStatus checkFlatRegionEdge
(
const triSurface& surf,
const scalar tol,
const scalar includedAngle,
const label edgeI
)
{
const edge& e = surf.edges()[edgeI];
const labelList& eFaces = surf.edgeFaces()[edgeI];
// Bin according to normal
DynamicList<Foam::vector> normals(2);
DynamicList<labelList> bins(2);
forAll(eFaces, eFaceI)
{
const Foam::vector& n = surf.faceNormals()[eFaces[eFaceI]];
// Find the normal in normals
label index = -1;
forAll(normals, normalI)
{
if (mag(n&normals[normalI]) > (1-tol))
{
index = normalI;
break;
}
}
if (index != -1)
{
bins[index].append(eFaceI);
}
else if (normals.size() >= 2)
{
// Would be third normal. Mark as feature.
//Pout<< "** at edge:" << surf.localPoints()[e[0]]
// << surf.localPoints()[e[1]]
// << " have normals:" << normals
// << " and " << n << endl;
return surfaceFeatures::REGION;
}
else
{
normals.append(n);
bins.append(labelList(1, eFaceI));
}
}
// Check resulting number of bins
if (bins.size() == 1)
{
// Note: should check here whether they are two sets of faces
// that are planar or indeed 4 faces al coming together at an edge.
//Pout<< "** at edge:"
// << surf.localPoints()[e[0]]
// << surf.localPoints()[e[1]]
// << " have single normal:" << normals[0]
// << endl;
return surfaceFeatures::NONE;
}
else
{
// Two bins. Check if normals make an angle
//Pout<< "** at edge:"
// << surf.localPoints()[e[0]]
// << surf.localPoints()[e[1]] << nl
// << " normals:" << normals << nl
// << " bins :" << bins << nl
// << endl;
if (includedAngle >= 0)
{
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
forAll(eFaces, i)
{
const Foam::vector& ni = surf.faceNormals()[eFaces[i]];
for (label j=i+1; j<eFaces.size(); j++)
{
const Foam::vector& nj = surf.faceNormals()[eFaces[j]];
if (mag(ni & nj) < minCos)
{
//Pout<< "have sharp feature between normal:" << ni
// << " and " << nj << endl;
// Is feature. Keep as region or convert to
// feature angle? For now keep as region.
return surfaceFeatures::REGION;
}
}
}
}
// So now we have two normals bins but need to make sure both
// bins have the same regions in it.
// 1. store + or - region number depending
// on orientation of triangle in bins[0]
const labelList& bin0 = bins[0];
labelList regionAndNormal(bin0.size());
forAll(bin0, i)
{
const labelledTri& t = surf.localFaces()[eFaces[bin0[i]]];
int dir = t.edgeDirection(e);
if (dir > 0)
{
regionAndNormal[i] = t.region()+1;
}
else if (dir == 0)
{
FatalErrorIn("problem.")
<< exit(FatalError);
}
else
{
regionAndNormal[i] = -(t.region()+1);
}
}
// 2. check against bin1
const labelList& bin1 = bins[1];
labelList regionAndNormal1(bin1.size());
forAll(bin1, i)
{
const labelledTri& t = surf.localFaces()[eFaces[bin1[i]]];
int dir = t.edgeDirection(e);
label myRegionAndNormal;
if (dir > 0)
{
myRegionAndNormal = t.region()+1;
}
else
{
myRegionAndNormal = -(t.region()+1);
}
regionAndNormal1[i] = myRegionAndNormal;
label index = findIndex(regionAndNormal, -myRegionAndNormal);
if (index == -1)
{
// Not found.
//Pout<< "cannot find region " << myRegionAndNormal
// << " in regions " << regionAndNormal << endl;
return surfaceFeatures::REGION;
}
}
// Passed all checks, two normal bins with the same contents.
//Pout<< "regionAndNormal:" << regionAndNormal << endl;
//Pout<< "myRegionAndNormal:" << regionAndNormal1 << endl;
return surfaceFeatures::NONE;
}
}
void writeStats(const extendedFeatureEdgeMesh& fem, Ostream& os)
{
os << " points : " << fem.points().size() << nl
<< " of which" << nl
<< " convex : "
<< fem.concaveStart() << nl
<< " concave : "
<< (fem.mixedStart()-fem.concaveStart()) << nl
<< " mixed : "
<< (fem.nonFeatureStart()-fem.mixedStart()) << nl
<< " non-feature : "
<< (fem.points().size()-fem.nonFeatureStart()) << nl
<< " edges : " << fem.edges().size() << nl
<< " of which" << nl
<< " external edges : "
<< fem.internalStart() << nl
<< " internal edges : "
<< (fem.flatStart()- fem.internalStart()) << nl
<< " flat edges : "
<< (fem.openStart()- fem.flatStart()) << nl
<< " open edges : "
<< (fem.multipleStart()- fem.openStart()) << nl
<< " multiply connected : "
<< (fem.edges().size()- fem.multipleStart()) << nl;
}
// Main program:
int main(int argc, char *argv[])
{
argList::addNote
(
"extract and write surface features to file"
);
argList::noParallel();
# include "addDictOption.H"
# include "setRootCase.H"
# include "createTime.H"
const word dictName("surfaceFeatureExtractDict");
# include "setSystemRunTimeDictionaryIO.H"
Info<< "Reading " << dictName << nl << endl;
const IOdictionary dict(dictIO);
forAllConstIter(dictionary, dict, iter)
{
const dictionary& surfaceDict = iter().dict();
const fileName surfFileName = iter().keyword();
const fileName sFeatFileName = surfFileName.lessExt().name();
Info<< "Surface : " << surfFileName << nl << endl;
const Switch writeVTK =
surfaceDict.lookupOrDefault<Switch>("writeVTK", "off");
const Switch writeObj =
surfaceDict.lookupOrDefault<Switch>("writeObj", "off");
const Switch curvature =
surfaceDict.lookupOrDefault<Switch>("curvature", "off");
const Switch featureProximity =
surfaceDict.lookupOrDefault<Switch>("featureProximity", "off");
const Switch closeness =
surfaceDict.lookupOrDefault<Switch>("closeness", "off");
const word extractionMethod = surfaceDict.lookup("extractionMethod");
#ifndef ENABLE_CURVATURE
if (curvature)
{
WarningIn(args.executable())
<< "Curvature calculation has been requested but "
<< args.executable() << " has not " << nl
<< " been compiled with CGAL. "
<< "Skipping the curvature calculation." << endl;
}
#else
if (curvature && env("FOAM_SIGFPE"))
{
WarningIn(args.executable())
<< "Detected floating point exception trapping (FOAM_SIGFPE)."
<< " This might give" << nl
<< " problems when calculating curvature on straight angles"
<< " (infinite curvature)" << nl
<< " Switch it off in case of problems." << endl;
}
#endif
Info<< nl << "Feature line extraction is only valid on closed manifold "
<< "surfaces." << endl;
// Read
// ~~~~
triSurface surf("constant/triSurface/" + surfFileName);
Info<< "Statistics:" << endl;
surf.writeStats(Info);
Info<< endl;
faceList faces(surf.size());
forAll(surf, fI)
{
faces[fI] = surf[fI].triFaceFace();
}
// Either construct features from surface & featureAngle or read set.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
surfaceFeatures set(surf);
scalar includedAngle = -1;
if (extractionMethod == "extractFromFile")
{
const fileName featureEdgeFile =
surfaceDict.subDict("extractFromFileCoeffs").lookup
(
"featureEdgeFile"
);
edgeMesh eMesh(featureEdgeFile);
// Sometimes duplicate edges are present. Remove them.
eMesh.mergeEdges();
Info<< nl << "Reading existing feature edges from file "
<< featureEdgeFile << endl;
set = surfaceFeatures(surf, eMesh.points(), eMesh.edges());
}
else if (extractionMethod == "extractFromSurface")
{
includedAngle = readScalar
(
surfaceDict.subDict("extractFromSurfaceCoeffs").lookup
(
"includedAngle"
)
);
Info<< nl << "Constructing feature set from included angle "
<< includedAngle << endl;
set = surfaceFeatures(surf, includedAngle);
}
else
{
FatalErrorIn(args.executable())
<< "No initial feature set. Provide either one"
<< " of extractFromFile (to read existing set)" << nl
<< " or extractFromSurface (to construct new set from angle)"
<< exit(FatalError);
}
Info<< nl
<< "Initial feature set:" << nl
<< " feature points : " << set.featurePoints().size() << nl
<< " feature edges : " << set.featureEdges().size() << nl
<< " of which" << nl
<< " region edges : " << set.nRegionEdges() << nl
<< " external edges : " << set.nExternalEdges() << nl
<< " internal edges : " << set.nInternalEdges() << nl
<< endl;
// Trim set
// ~~~~~~~~
if (surfaceDict.isDict("trimFeatures"))
{
dictionary trimDict = surfaceDict.subDict("trimFeatures");
scalar minLen =
trimDict.lookupOrAddDefault<scalar>("minLen", -GREAT);
label minElem = trimDict.lookupOrAddDefault<label>("minElem", 0);
// Trim away small groups of features
if (minElem > 0 || minLen > 0)
{
Info<< "Removing features of length < "
<< minLen << endl;
Info<< "Removing features with number of edges < "
<< minElem << endl;
set.trimFeatures(minLen, minElem);
}
}
// Subset
// ~~~~~~
// Convert to marked edges, points
List<surfaceFeatures::edgeStatus> edgeStat(set.toStatus());
if (surfaceDict.isDict("subsetFeatures"))
{
const dictionary& subsetDict = surfaceDict.subDict
(
"subsetFeatures"
);
if (subsetDict.found("insideBox"))
{
treeBoundBox bb(subsetDict.lookup("insideBox")());
Info<< "Removing all edges outside bb " << bb << endl;
dumpBox(bb, "subsetBox.obj");
deleteBox(surf, bb, false, edgeStat);
}
else if (subsetDict.found("outsideBox"))
{
treeBoundBox bb(subsetDict.lookup("outsideBox")());
Info<< "Removing all edges inside bb " << bb << endl;
dumpBox(bb, "deleteBox.obj");
deleteBox(surf, bb, true, edgeStat);
}
const Switch nonManifoldEdges =
subsetDict.lookupOrDefault<Switch>("nonManifoldEdges", "yes");
if (!nonManifoldEdges)
{
Info<< "Removing all non-manifold edges"
<< " (edges with > 2 connected faces) unless they"
<< " cross multiple regions" << endl;
forAll(edgeStat, edgeI)
{
const labelList& eFaces = surf.edgeFaces()[edgeI];
if
(
eFaces.size() > 2
&& edgeStat[edgeI] == surfaceFeatures::REGION
&& (eFaces.size() % 2) == 0
)
{
edgeStat[edgeI] = checkFlatRegionEdge
(
surf,
1e-5, //tol,
includedAngle,
edgeI
);
}
}
}
const Switch openEdges =
subsetDict.lookupOrDefault<Switch>("openEdges", "yes");
if (!openEdges)
{
Info<< "Removing all open edges"
<< " (edges with 1 connected face)" << endl;
forAll(edgeStat, edgeI)
{
if (surf.edgeFaces()[edgeI].size() == 1)
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
if (subsetDict.found("plane"))
{
plane cutPlane(subsetDict.lookup("plane")());
deleteEdges(surf, cutPlane, edgeStat);
Info<< "Only edges that intersect the plane with normal "
<< cutPlane.normal()
<< " and base point " << cutPlane.refPoint()
<< " will be included as feature edges."<< endl;
}
}
surfaceFeatures newSet(surf);
newSet.setFromStatus(edgeStat);
//if (writeObj)
//{
// newSet.writeObj("final");
//}
// Extracting and writing a extendedFeatureEdgeMesh
extendedFeatureEdgeMesh feMesh
(
newSet,
runTime,
sFeatFileName + ".extendedFeatureEdgeMesh"
);
if (surfaceDict.isDict("addFeatures"))
{
const dictionary& subsetDict = surfaceDict.subDict
(
"addFeatures"
);
const word addFeName = subsetDict["name"];
Info<< "Adding (without merging) features from " << addFeName
<< nl << endl;
const Switch flip = subsetDict["flip"];
extendedFeatureEdgeMesh addFeMesh
(
IOobject
(
addFeName,
runTime.time().constant(),
"extendedFeatureEdgeMesh",
runTime.time(),
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
Info<< "Read " << addFeMesh.name() << nl;
writeStats(addFeMesh, Info);
if (flip)
{
Info<< "Flipping " << addFeMesh.name() << endl;
addFeMesh.flipNormals();
Info<< "After flipping " << addFeMesh.name() << nl;
writeStats(addFeMesh, Info);
}
feMesh.add(addFeMesh);
}
Info<< nl
<< "Final feature set:" << nl;
writeStats(feMesh, Info);
Info<< nl << "Writing extendedFeatureEdgeMesh to "
<< feMesh.objectPath() << endl;
mkDir(feMesh.path());
if (writeObj)
{
feMesh.writeObj(feMesh.path()/surfFileName.lessExt().name());
}
feMesh.write();
// Write a featureEdgeMesh for backwards compatibility
featureEdgeMesh bfeMesh
(
IOobject
(
surfFileName.lessExt().name() + ".eMesh", // name
runTime.constant(), // instance
"triSurface",
runTime, // registry
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
feMesh.points(),
feMesh.edges()
);
Info<< nl << "Writing featureEdgeMesh to "
<< bfeMesh.objectPath() << endl;
bfeMesh.regIOobject::write();
// Find close features
// // Dummy trim operation to mark features
// labelList featureEdgeIndexing = newSet.trimFeatures(-GREAT, 0);
// scalarField surfacePtFeatureIndex(surf.points().size(), -1);
// forAll(newSet.featureEdges(), eI)
// {
// const edge& e = surf.edges()[newSet.featureEdges()[eI]];
// surfacePtFeatureIndex[surf.meshPoints()[e.start()]] =
// featureEdgeIndexing[newSet.featureEdges()[eI]];
// surfacePtFeatureIndex[surf.meshPoints()[e.end()]] =
// featureEdgeIndexing[newSet.featureEdges()[eI]];
// }
// if (writeVTK)
// {
// vtkSurfaceWriter().write
// (
// runTime.constant()/"triSurface", // outputDir
// sFeatFileName, // surfaceName
// surf.points(),
// faces,
// "surfacePtFeatureIndex", // fieldName
// surfacePtFeatureIndex,
// true, // isNodeValues
// true // verbose
// );
// }
// Random rndGen(343267);
// treeBoundBox surfBB
// (
// treeBoundBox(searchSurf.bounds()).extend(rndGen, 1e-4)
// );
// surfBB.min() -= Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
// surfBB.max() += Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
// indexedOctree<treeDataEdge> ftEdTree
// (
// treeDataEdge
// (
// false,
// surf.edges(),
// surf.localPoints(),
// newSet.featureEdges()
// ),
// surfBB,
// 8, // maxLevel
// 10, // leafsize
// 3.0 // duplicity
// );
// labelList nearPoints = ftEdTree.findBox
// (
// treeBoundBox
// (
// sPt - featureSearchSpan*Foam::vector::one,
// sPt + featureSearchSpan*Foam::vector::one
// )
// );
if (closeness)
{
Info<< nl << "Extracting internal and external closeness of "
<< "surface." << endl;
triSurfaceMesh searchSurf
(
IOobject
(
sFeatFileName + ".closeness",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf
);
// Internal and external closeness
// Prepare start and end points for intersection tests
const vectorField& normals = searchSurf.faceNormals();
scalar span = searchSurf.bounds().mag();
scalar externalAngleTolerance = 10;
scalar externalToleranceCosAngle =
Foam::cos
(
degToRad(180 - externalAngleTolerance)
);
scalar internalAngleTolerance = 45;
scalar internalToleranceCosAngle =
Foam::cos
(
degToRad(180 - internalAngleTolerance)
);
Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle
<< nl
<< "internalToleranceCosAngle: " << internalToleranceCosAngle
<< endl;
// Info<< "span " << span << endl;
pointField start(searchSurf.faceCentres() - span*normals);
pointField end(searchSurf.faceCentres() + span*normals);
const pointField& faceCentres = searchSurf.faceCentres();
List<List<pointIndexHit> > allHitInfo;
// Find all intersections (in order)
searchSurf.findLineAll(start, end, allHitInfo);
scalarField internalCloseness(start.size(), GREAT);
scalarField externalCloseness(start.size(), GREAT);
forAll(allHitInfo, fI)
{
const List<pointIndexHit>& hitInfo = allHitInfo[fI];
if (hitInfo.size() < 1)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (hitInfo.size() == 1)
{
if (!hitInfo[0].hit())
{
// FatalErrorIn(args.executable())
// << "findLineAll did not hit any face."
// << exit(FatalError);
}
else if (hitInfo[0].index() != fI)
{
drawHitProblem
(
fI,
surf,
start,
faceCentres,
end,
hitInfo
);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
}
else
{
label ownHitI = -1;
forAll(hitInfo, hI)
{
// Find the hit on the triangle that launched the ray
if (hitInfo[hI].index() == fI)
{
ownHitI = hI;
break;
}
}
if (ownHitI < 0)
{
drawHitProblem
(
fI,
surf,
start,
faceCentres,
end,
hitInfo
);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (ownHitI == 0)
{
// There are no internal hits, the first hit is the
// closest external hit
if
(
(
normals[fI]
& normals[hitInfo[ownHitI + 1].index()]
)
< externalToleranceCosAngle
)
{
externalCloseness[fI] =
mag
(
faceCentres[fI]
- hitInfo[ownHitI + 1].hitPoint()
);
}
}
else if (ownHitI == hitInfo.size() - 1)
{
// There are no external hits, the last but one hit is
// the closest internal hit
if
(
(
normals[fI]
& normals[hitInfo[ownHitI - 1].index()]
)
< internalToleranceCosAngle
)
{
internalCloseness[fI] =
mag
(
faceCentres[fI]
- hitInfo[ownHitI - 1].hitPoint()
);
}
}
else
{
if
(
(
normals[fI]
& normals[hitInfo[ownHitI + 1].index()]
)
< externalToleranceCosAngle
)
{
externalCloseness[fI] =
mag
(
faceCentres[fI]
- hitInfo[ownHitI + 1].hitPoint()
);
}
if
(
(
normals[fI]
& normals[hitInfo[ownHitI - 1].index()]
)
< internalToleranceCosAngle
)
{
internalCloseness[fI] =
mag
(
faceCentres[fI]
- hitInfo[ownHitI - 1].hitPoint()
);
}
}
}
}
triSurfaceScalarField internalClosenessField
(
IOobject
(
sFeatFileName + ".internalCloseness",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
internalCloseness
);
internalClosenessField.write();
triSurfaceScalarField externalClosenessField
(
IOobject
(
sFeatFileName + ".externalCloseness",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
externalCloseness
);
externalClosenessField.write();
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"internalCloseness", // fieldName
internalCloseness,
false, // isNodeValues
true // verbose
);
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"externalCloseness", // fieldName
externalCloseness,
false, // isNodeValues
true // verbose
);
}
}
#ifdef ENABLE_CURVATURE
if (curvature)
{
Info<< nl << "Extracting curvature of surface at the points."
<< endl;
scalarField k = calcCurvature(surf);
// Modify the curvature values on feature edges and points to be zero.
// forAll(newSet.featureEdges(), fEI)
// {
// const edge& e = surf.edges()[newSet.featureEdges()[fEI]];
//
// k[surf.meshPoints()[e.start()]] = 0.0;
// k[surf.meshPoints()[e.end()]] = 0.0;
// }
triSurfacePointScalarField kField
(
IOobject
(
sFeatFileName + ".curvature",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
k
);
kField.write();
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"curvature", // fieldName
k,
true, // isNodeValues
true // verbose
);
}
}
#endif
if (featureProximity)
{
Info<< nl << "Extracting proximity of close feature points and "
<< "edges to the surface" << endl;
const scalar searchDistance =
readScalar(surfaceDict.lookup("maxFeatureProximity"));
const scalar radiusSqr = sqr(searchDistance);
scalarField featureProximity(surf.size(), searchDistance);
forAll(surf, fI)
{
const triPointRef& tri = surf[fI].tri(surf.points());
const point& triCentre = tri.circumCentre();
List<pointIndexHit> hitList;
feMesh.allNearestFeatureEdges(triCentre, radiusSqr, hitList);
featureProximity[fI] =
calcProximityOfFeatureEdges
(
feMesh,
hitList,
featureProximity[fI]
);
feMesh.allNearestFeaturePoints(triCentre, radiusSqr, hitList);
featureProximity[fI] =
calcProximityOfFeaturePoints
(
hitList,
featureProximity[fI]
);
}
triSurfaceScalarField featureProximityField
(
IOobject
(
sFeatFileName + ".featureProximity",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
featureProximity
);
featureProximityField.write();
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"featureProximity", // fieldName
featureProximity,
false, // isNodeValues
true // verbose
);
}
}
Info<< endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //